Marek Karpinski

n-dimensional linear arrangements and convex polyhedra by randomized

algebraic decision trees. We give also a number of concrete applications

of these results. In particular, we derive first nontrivial, in fact

quadratic, ...
more >>>

Paul Beame, Raphael Clifford, Widad Machmouchi

We derive new time-space tradeoff lower bounds and algorithms for exactly computing statistics of input data, including frequency moments, element distinctness, and order statistics, that are simple to calculate for sorted data. In particular, we develop a randomized algorithm for the element distinctness problem whose time $T$ and space $S$ ... more >>>

Mark Bun, Justin Thaler

The approximate degree of a Boolean function $f: \{-1, 1\}^n \to \{-1, 1\}$ is the minimum degree of a real polynomial that approximates $f$ to within error $1/3$ in the $\ell_\infty$ norm. In an influential result, Aaronson and Shi (J. ACM 2004) proved tight $\tilde{\Omega}(n^{1/3})$ and $\tilde{\Omega}(n^{2/3})$ lower bounds on ... more >>>