Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > READ-ONCE BRANCHING PROGRAM:
Reports tagged with read-once branching program:
TR98-018 | 27th March 1998
Martin Sauerhoff

Randomness and Nondeterminism are Incomparable for Read-Once Branching Programs

Comments: 1

We extend the tools for proving lower bounds for randomized branching
programs by presenting a new technique for the read-once case which is
applicable to a large class of functions. This technique fills the gap
between simple methods only applicable for OBDDs and the well-known
"rectangle technique" of Borodin, Razborov ... more >>>


TR19-020 | 4th February 2019
Ludmila Glinskih, Dmitry Itsykson

On Tseitin formulas, read-once branching programs and treewidth

Revisions: 1

We show that any nondeterministic read-once branching program that computes a satisfiable Tseitin formula based on an $n\times n$ grid graph has size at least $2^{\Omega(n)}$. Then using the Excluded Grid Theorem by Robertson and Seymour we show that for arbitrary graph $G(V,E)$ any nondeterministic read-once branching program that computes ... more >>>


TR19-178 | 5th December 2019
Dmitry Itsykson, Artur Riazanov, Danil Sagunov, Petr Smirnov

Almost Tight Lower Bounds on Regular Resolution Refutations of Tseitin Formulas for All Constant-Degree Graphs

We show that the size of any regular resolution refutation of Tseitin formula $T(G,c)$ based on a graph $G$ is at least $2^{\Omega(tw(G)/\log n)}$, where $n$ is the number of vertices in $G$ and $tw(G)$ is the treewidth of $G$. For constant degree graphs there is known upper bound $2^{O(tw(G))}$ ... more >>>


TR23-058 | 23rd April 2023
Xin Li, Yan Zhong

Explicit Directional Affine Extractors and Improved Hardness for Linear Branching Programs

Affine extractors give some of the best-known lower bounds for various computational models, such as AC$^0$ circuits, parity decision trees, and general Boolean circuits. However, they are not known to give strong lower bounds for read-once branching programs (ROBPs). In a recent work, Gryaznov, Pudl\'{a}k, and Talebanfard (CCC' 22) introduced ... more >>>


TR23-114 | 8th August 2023
Lijie Chen, William Hoza, Xin Lyu, Avishay Tal, Hongxun Wu

Weighted Pseudorandom Generators via Inverse Analysis of Random Walks and Shortcutting

A weighted pseudorandom generator (WPRG) is a generalization of a pseudorandom generator (PRG) in which, roughly speaking, probabilities are replaced with weights that are permitted to be positive or negative. We present new explicit constructions of WPRGs that fool certain classes of standard-order read-once branching programs. In particular, our WPRGs ... more >>>




ISSN 1433-8092 | Imprint