Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with NC^1:
TR99-008 | 19th March 1999
Eric Allender, Vikraman Arvind, Meena Mahajan

Arithmetic Complexity, Kleene Closure, and Formal Power Series

Revisions: 1 , Comments: 1

The aim of this paper is to use formal power series techniques to
study the structure of small arithmetic complexity classes such as
GapNC^1 and GapL. More precisely, we apply the Kleene closure of
languages and the formal power series operations of inversion and
root ... more >>>

TR01-048 | 3rd June 2001
Jui-Lin Lee

Branching program, commutator, and icosahedron, part I

In this paper we give a direct proof of $N_0=N_0^\prime$, i.e., the equivalence of
uniform $NC^1$ based on different recursion principles: one is OR-AND complete
binary tree (in depth $\log n$) and the other is the recursion on notation with value
bounded in $[0,k]$ and $|x|(=n)$ many ... more >>>

TR04-108 | 24th November 2004
Eric Allender, Samir Datta, Sambuddha Roy

Topology inside NC^1

We show that ACC^0 is precisely what can be computed with constant-width circuits of polynomial size and polylogarithmic genus. This extends a characterization given by Hansen, showing that planar constant-width circuits also characterize ACC^0. Thus polylogarithmic genus provides no additional computational power in this model.
We consider other generalizations of ... more >>>

TR05-149 | 7th December 2005
Eric Allender, David Mix Barrington, Tanmoy Chakraborty, Samir Datta, Sambuddha Roy

Grid Graph Reachability Problems

Revisions: 1

We study the complexity of restricted versions of st-connectivity, which is the standard complete problem for NL. Grid graphs are a useful tool in this regard, since
* reachability on grid graphs is logspace-equivalent to reachability in general planar digraphs, and
* reachability on certain classes of grid graphs gives ... more >>>

TR21-002 | 8th January 2021
Pooya Hatami, William Hoza, Avishay Tal, Roei Tell

Fooling Constant-Depth Threshold Circuits

Revisions: 1

We present new constructions of pseudorandom generators (PRGs) for two of the most widely-studied non-uniform circuit classes in complexity theory. Our main result is a construction of the first non-trivial PRG for linear threshold (LTF) circuits of arbitrary constant depth and super-linear size. This PRG fools circuits with depth $d\in\mathbb{N}$ ... more >>>

ISSN 1433-8092 | Imprint