Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with Label-Cover:
TR99-015 | 25th April 1999
Irit Dinur, S. Safra

On the hardness of approximating label cover

The label-cover problem was introduced in \cite{ABSS} and shown
there to be quasi-NP-hard to approximate to within a factor of
$2^{\log^{1-\delta}n}$ for any {\em constant} $\delta>0$. This
combinatorial graph problem has been utilized \cite{ABSS,GM,ABMP}
for showing hardness-of-approximation of numerous problems. We
present a direct combinatorial reduction from low
error-probability PCP ... more >>>

TR16-128 | 13th August 2016
Irit Dinur

Mildly exponential reduction from gap 3SAT to polynomial-gap label-cover

We show that if gap-3SAT has no sub-exponential time algorithms then a weak form of the sliding scale conjecture holds. Namely, for every $\alpha>0$ any algorithm for $n^\alpha$-approximating the value of label cover must run in time at least $n^{\Omega(\exp(1/\alpha))}$, where $n$ is the size of the instance.

Put differently, ... more >>>

ISSN 1433-8092 | Imprint