Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > GREATEST COMMON DIVISOR:
Reports tagged with Greatest common divisor:
TR99-027 | 17th July 1999
Marek Karpinski, Igor E. Shparlinski

On the computational hardness of testing square-freeness of sparse polynomials

We show that deciding square-freeness of a sparse univariate
polynomial over the integer and over the algebraic closure of a
finite field is NP-hard. We also discuss some related open
problems about sparse polynomials.

more >>>

TR24-080 | 16th April 2024
Robert Andrews, Avi Wigderson

Constant-Depth Arithmetic Circuits for Linear Algebra Problems

Revisions: 1

We design polynomial size, constant depth (namely, $AC^0$) arithmetic formulae for the greatest common divisor (GCD) of two polynomials, as well as the related problems of the discriminant, resultant, Bézout coefficients, squarefree decomposition, and the inversion of structured matrices like Sylvester and Bézout matrices. Our GCD algorithm extends to any ... more >>>


TR25-171 | 7th November 2025
Robert Andrews, Mrinal Kumar, Shanthanu Rai

Modular composition & polynomial GCD in the border of small, shallow circuits

Modular composition is the problem of computing the coefficient vector of the polynomial $f(g(x)) \bmod h(x)$, given as input the coefficient vectors of univariate polynomials $f$, $g$, and $h$ over an underlying field $\mathbb{F}$. While this problem is known to be solvable in nearly-linear time over finite fields due to ... more >>>




ISSN 1433-8092 | Imprint