Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with Combinatorial Designs:
TR99-046 | 17th November 1999
Ran Raz, Omer Reingold, Salil Vadhan

Extracting All the Randomness and Reducing the Error in Trevisan's Extractors

We give explicit constructions of extractors which work for a source of
any min-entropy on strings of length n. These extractors can extract any
constant fraction of the min-entropy using O(log^2 n) additional random
bits, and can extract all the min-entropy using O(log^3 n) additional
random bits. Both of these ... more >>>

TR00-044 | 26th June 2000
Tzvika Hartman, Ran Raz

On the Distribution of the Number of Roots of Polynomials and Explicit Logspace Extractors

Weak designs were defined by Raz, Reingold and Vadhan (1999) and are
used in constructions of extractors. Roughly speaking, a weak design
is a collection of subsets satisfying some near-disjointness
properties. Constructions of weak designs with certain parameters are
given in [RRV99]. These constructions are explicit in the sense that
more >>>

TR17-070 | 15th April 2017
Shachar Lovett, Sankeerth Rao, Alex Vardy

Probabilistic Existence of Large Sets of Designs

A new probabilistic technique for establishing the existence of certain regular combinatorial structures has been introduced by Kuperberg, Lovett, and Peled (STOC 2012). Using this technique, it can be shown that under certain conditions, a randomly chosen structure has the required properties of a $t-(n,k,?)$ combinatorial design with tiny, yet ... more >>>

TR18-157 | 10th September 2018
Nutan Limaye, Karteek Sreenivasiah, Srikanth Srinivasan, Utkarsh Tripathi, S Venkitesh

The Coin Problem in Constant Depth: Sample Complexity and Parity gates

Revisions: 2

The $\delta$-Coin Problem is the computational problem of distinguishing between coins that are heads with probability $(1+\delta)/2$ or $(1-\delta)/2,$ where $\delta$ is a parameter that is going to $0$. We study the complexity of this problem in the model of constant-depth Boolean circuits and prove the following results.

1. Upper ... more >>>

ISSN 1433-8092 | Imprint