Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > HARDNESS OF APPROXIMATION:
Reports tagged with Hardness of Approximation:
TR98-007 | 12th January 1998
Luca Trevisan

Recycling Queries in PCPs and in Linearity Tests

We study query-efficient Probabilistically Checkable
Proofs (PCPs) and linearity tests. We focus on the number
of amortized query bits. A testing algorithm uses $q$ amortized
query bits if, for some constant $k$, it reads $qk$ bits and has
error probability at most $2^{-k}$. The best known ... more >>>


TR16-195 | 19th November 2016
Pasin Manurangsi

Almost-Polynomial Ratio ETH-Hardness of Approximating Densest $k$-Subgraph

Revisions: 1

In the Densest $k$-Subgraph problem, given an undirected graph $G$ and an integer $k$, the goal is to find a subgraph of $G$ on $k$ vertices that contains maximum number of edges. Even though the state-of-the-art algorithm for the problem achieves only $O(n^{1/4 + \varepsilon})$ approximation ratio (Bhaskara et al., ... more >>>


TR17-186 | 29th November 2017
Karthik C. S., Bundit Laekhanukit, Pasin Manurangsi

On the Parameterized Complexity of Approximating Dominating Set

Revisions: 1

We study the parameterized complexity of approximating the $k$-Dominating Set (domset) problem where an integer $k$ and a graph $G$ on $n$ vertices are given as input, and the goal is to find a dominating set of size at most $F(k) \cdot k$ whenever the graph $G$ has a dominating ... more >>>


TR18-037 | 21st February 2018
Vijay Bhattiprolu, Mrinalkanti Ghosh, Venkatesan Guruswami, Euiwoong Lee, Madhur Tulsiani

Inapproximability of Matrix $p \rightarrow q$ Norms

We study the problem of computing the $p\rightarrow q$ norm of a matrix $A \in R^{m \times n}$, defined as \[ \|A\|_{p\rightarrow q} ~:=~ \max_{x \,\in\, R^n \setminus \{0\}} \frac{\|Ax\|_q}{\|x\|_p} \] This problem generalizes the spectral norm of a matrix ($p=q=2$) and the Grothendieck problem ($p=\infty$, $q=1$), and has been ... more >>>


TR19-115 | 4th September 2019
Arnab Bhattacharyya, Édouard Bonnet, László Egri, Suprovat Ghoshal, Karthik C. S., Bingkai Lin, Pasin Manurangsi, Dániel Marx

Parameterized Intractability of Even Set and Shortest Vector Problem

The k-Even Set problem is a parameterized variant of the Minimum Distance Problem of linear codes over $\mathbb{F}_2$, which can be stated as follows: given a generator matrix A and an integer k, determine whether the code generated by A has distance at most k, or in other words, whether ... more >>>


TR19-148 | 1st November 2019
Amey Bhangale, Subhash Khot

Simultaneous Max-Cut is harder to approximate than Max-Cut

Revisions: 1

A systematic study of simultaneous optimization of constraint satisfaction problems was initiated in [BKS15]. The simplest such problem is the simultaneous Max-Cut. [BKKST18] gave a $.878$-minimum approximation algorithm for simultaneous Max-Cut which is {\em almost optimal} assuming the Unique Games Conjecture (UGC). For a single instance Max-Cut, [GW95] gave an ... more >>>


TR20-086 | 5th June 2020
Andreas Feldmann, Karthik C. S., Euiwoong Lee, Pasin Manurangsi

A Survey on Approximation in Parameterized Complexity: Hardness and Algorithms

Parameterization and approximation are two popular ways of coping with NP-hard problems. More recently, the two have also been combined to derive many interesting results. We survey developments in the area both from the algorithmic and hardness perspectives, with emphasis on new techniques and potential future research directions.

more >>>

TR20-130 | 30th August 2020
Amey Bhangale, Subhash Khot

Optimal Inapproximability of Satisfiable k-LIN over Non-Abelian Groups

A seminal result of H\r{a}stad [J. ACM, 48(4):798–859, 2001] shows that it is NP-hard to find an assignment that satisfies $\frac{1}{|G|}+\varepsilon$ fraction of the constraints of a given $k$-LIN instance over an abelian group, even if there is an assignment that satisfies $(1-\varepsilon)$ fraction of the constraints, for any constant ... more >>>


TR21-156 | 10th November 2021
Boris Bukh, Karthik C. S., Bhargav Narayanan

Applications of Random Algebraic Constructions to Hardness of Approximation

In this paper, we show how one may (efficiently) construct two types of extremal combinatorial objects whose existence was previously conjectural.

(*) Panchromatic Graphs: For fixed integer k, a k-panchromatic graph is, roughly speaking, a balanced bipartite graph with one partition class equipartitioned into k colour classes in ... more >>>


TR21-177 | 22nd November 2021
Vincent Cohen-Addad, Karthik C. S., Euiwoong Lee

Johnson Coverage Hypothesis: Inapproximability of k-means and k-median in $\ell_p$-metrics

k-median and k-means are the two most popular objectives for clustering algorithms. Despite intensive effort, a good understanding of the approximability of these objectives, particularly in $\ell_p$-metrics, remains a major open problem. In this paper, we significantly improve upon the hardness of approximation factors known in literature for these objectives ... more >>>


TR22-061 | 30th April 2022
Amey Bhangale, Subhash Khot, Dor Minzer

On Approximability of Satisfiable $k$-CSPs: I

We consider the $P$-CSP problem for $3$-ary predicates $P$ on satisfiable instances. We show that under certain conditions on $P$ and a $(1,s)$ integrality gap instance of the $P$-CSP problem, it can be translated into a dictatorship vs. quasirandomness test with perfect completeness and soundness $s+\varepsilon$, for every constant $\varepsilon>0$. ... more >>>


TR23-055 | 20th April 2023
Amey Bhangale, Subhash Khot, Dor Minzer

On Approximability of Satisfiable $k$-CSPs: II

Revisions: 1

Let $\Sigma$ be an alphabet and $\mu$ be a distribution on $\Sigma^k$ for some $k \geq 2$. Let $\alpha > 0$ be the minimum probability of a tuple in the support of $\mu$ (denoted by $supp(\mu)$). Here, the support of $\mu$ is the set of all tuples in $\Sigma^k$ that ... more >>>


TR23-155 | 25th October 2023
Venkatesan Guruswami, Xuandi Ren, Sai Sandeep

Baby PIH: Parameterized Inapproximability of Min CSP

Revisions: 1

The Parameterized Inapproximability Hypothesis (PIH) is the analog of the PCP theorem in the world of parameterized complexity. It asserts that no FPT algorithm can distinguish a satisfiable 2CSP instance from one which is only $(1-\varepsilon)$-satisfiable (where the parameter is the number of variables) for some constant $0<\varepsilon<1$.

We ... more >>>


TR24-027 | 18th February 2024
Dor Minzer, Kai Zhe Zheng

Near Optimal Alphabet-Soundness Tradeoff PCPs

We show that for all $\varepsilon>0$, for sufficiently large prime power $q\in\mathbb{N}$, for all $\delta>0$, it is NP-hard to distinguish whether a $2$-Prover-$1$-Round projection game with alphabet size $q$ has value at least $1-\delta$, or value at most $1/q^{1-\varepsilon}$. This establishes a nearly optimal alphabet-to-soundness tradeoff for $2$-query PCPs ... more >>>




ISSN 1433-8092 | Imprint