We prove an exponential lower bound for tree-like Cutting Planes
refutations of a set of clauses which has polynomial size resolution
refutations. This implies an exponential separation between tree-like
and dag-like proofs for both Cutting Planes and resolution; in both
cases only superpolynomial separations were known before.
In order to ...
more >>>
This paper gives two distinct proofs of an exponential separation
between regular resolution and unrestricted resolution.
The previous best known separation between these systems was
quasi-polynomial.
We show that the size of any regular resolution refutation of Tseitin formula $T(G,c)$ based on a graph $G$ is at least $2^{\Omega(tw(G)/\log n)}$, where $n$ is the number of vertices in $G$ and $tw(G)$ is the treewidth of $G$. For constant degree graphs there is known upper bound $2^{O(tw(G))}$ ... more >>>
We show that is hard to find regular or even ordered (also known as Davis-Putnam) Resolution proofs, extending the breakthrough result for general Resolution from Atserias and Müller to these restricted forms. Namely, regular and ordered Resolution are automatable if and only if P = NP. Specifically, for a CNF ... more >>>
The proof system resolution over parities (Res($\oplus$)) operates with disjunctions of linear equations (linear clauses) over $\mathbb{F}_2$; it extends the resolution proof system by incorporating linear algebra over $\mathbb{F}_2$. Over the years, several exponential lower bounds on the size of tree-like Res($\oplus$) refutations have been established. However, proving a superpolynomial ... more >>>