Continuing the study of the relationship between $TC^0$,
$AC^0$ and arithmetic circuits, started by Agrawal et al.
(IEEE Conference on Computational Complexity'97),
we answer a few questions left open in this
paper. Our main result is that the classes Diff$AC^0$ and
Gap$AC^0$ ...
more >>>
The essential idea in the fast parallel computation of division and
related problems is that of Chinese remainder representation
(CRR) -- storing a number in the form of its residues modulo many
small primes. Integer division provides one of the few natural
examples of problems for which ...
more >>>
Integer division has been known to lie in P-uniform TC^0 since
the mid-1980's, and recently this was improved to DLOG-uniform
TC^0. At the time that the results in this paper were proved and
submitted for conference presentation, it was unknown whether division
lay in DLOGTIME-uniform TC^0 (also known as ...
more >>>
In the setting known as DLOGTIME-uniformity,
the fundamental complexity classes
$AC^0\subset ACC^0\subseteq TC^0\subseteq NC^1$ have several
robust characterizations.
In this paper we refine uniformity further and examine the impact
of these refinements on $NC^1$ and its subclasses.
When applied to the logarithmic circuit depth characterization of $NC^1$,
some refinements leave ...
more >>>
We study which functions can be computed by efficient circuits whose gate connections are very easy to compute. We give quasilinear-size circuits for sorting whose connections can be computed by decision trees with depth logarithmic in the length of the gate description. We also show that NL has NC$^2$ circuits ... more >>>