A Uniform Generation procedure for $NP$ is an
algorithm which given any input in a fixed NP-language, outputs a uniformly
distributed NP-witness for membership of the input in the language.
We present a Uniform Generation procedure for $NP$ that runs in probabilistic
polynomial-time with an NP-oracle. This improves upon ...
more >>>
We give a randomized approximation algorithm taking
$O(k^{O(k)}n^{b+O(1)})$ time to count the number of copies of a
$k$-vertex graph with treewidth at most $b$ in an $n$ vertex graph
$G$ with approximation ratio $1/k^{O(k)}$ and error probability
inverse exponential in $n$. This algorithm is based on ...
more >>>
We describe a deterministic algorithm that, for constant k,
given a k-DNF or k-CNF formula f and a parameter e, runs in time
linear in the size of f and polynomial in 1/e and returns an
estimate of the fraction of satisfying assignments for f up to ...
more >>>
We study computational procedures that use both randomness and nondeterminism. Examples are Arthur-Merlin games and approximate counting and sampling of NP-witnesses. The goal of this paper is to derandomize such procedures under the weakest possible assumptions.
Our main technical contribution allows one to ``boost'' a given hardness assumption. One special ... more >>>
We study the compression of polynomially samplable sources. In particular, we give efficient prefix-free compression and decompression algorithms for three classes of such sources (whose support is a subset of {0,1}^n).
1. We show how to compress sources X samplable by logspace machines to expected length H(X)+O(1).
Our next ... more >>>
The notion of promise problems was introduced and initially studied
by Even, Selman and Yacobi
(Information and Control, Vol.~61, pages 159-173, 1984).
In this article we survey some of the applications that this
notion has found in the twenty years that elapsed.
These include the notion ...
more >>>
Let $X$ be randomly chosen from $\{-1,1\}^n$, and let $Y$ be randomly
chosen from the standard spherical Gaussian on $\R^n$. For any (possibly unbounded) polytope $P$
formed by the intersection of $k$ halfspaces, we prove that
$$\left|\Pr\left[X \in P\right] - \Pr\left[Y \in P\right]\right| \leq \log^{8/5}k ...
more >>>
We show that if Arthur-Merlin protocols can be derandomized, then there is a Boolean function computable in deterministic exponential-time with access to an NP oracle, that cannot be computed by Boolean circuits of exponential size. More formally, if $\mathrm{prAM}\subseteq \mathrm{P}^{\mathrm{NP}}$ then there is a Boolean function in $\mathrm{E}^{\mathrm{NP}}$ that requires ... more >>>
We give a deterministic, polynomial-time algorithm for approximately counting the number of {0,1}-solutions to any instance of the knapsack problem. On an instance of length n with total weight W and accuracy parameter eps, our algorithm produces a (1 + eps)-multiplicative approximation in time poly(n,log W,1/eps). We also give algorithms ... more >>>
We show that the promise problem of distinguishing $n$-bit strings of hamming weight $\ge 1/2 + \Omega(1/\log^{d-1} n)$ from strings of weight $\le 1/2 - \Omega(1/\log^{d-1} n)$ can be solved by explicit, randomized (unbounded-fan-in) poly(n)-size depth-$d$ circuits with error $\le 1/3$, but cannot be solved by deterministic poly(n)-size depth-$(d+1)$ circuits, ... more >>>
The relativized weak pigeonhole principle states that if at least $2n$ out of $n^2$ pigeons fly into $n$ holes, then some hole must be doubly occupied. We prove that every DNF-refutation of the CNF encoding of this principle requires size $2^{(\log n)^{3/2-\epsilon}}$ for every $\epsilon > 0$ and every sufficiently ... more >>>
{\em Does derandomization of probabilistic algorithms become easier when the number of ``bad'' random inputs is extremely small?}
In relation to the above question, we put forward the following {\em quantified derandomization challenge}:
For a class of circuits $\cal C$ (e.g., P/poly or $AC^0,AC^0[2]$) and a bounding function $B:\N\to\N$ (e.g., ...
more >>>
We design a fully polynomial time approximation scheme (FPTAS) for counting the number of matchings (packings) in arbitrary 3-uniform hypergraphs of maximum degree three, referred to as $(3,3)$-hypergraphs. It is the first polynomial time approximation scheme for that problem, which includes also, as a special case, the 3D Matching counting ... more >>>
We ask for feasibly constructive proofs of known circuit lower bounds for explicit functions on bit strings of length $n$. In 1995 Razborov showed that many can be proved in Cook’s theory $PV_1$, a bounded arithmetic formalizing polynomial time reasoning. He formalized circuit lower bound statements for small $n$ of ... more >>>
We consider the following problem: estimate the size of a nonempty set $S\subseteq\left[ N\right] $, given both quantum queries to a membership oracle for $S$, and a device that generates equal superpositions $\left\vert S\right\rangle $ over $S$ elements. We show that, if $\left\vert S\right\vert $ is neither too large nor ... more >>>
We prove a query complexity lower bound for $QMA$ protocols that solve approximate counting: estimating the size of a set given a membership oracle. This gives rise to an oracle $A$ such that $SBP^A \not\subset QMA^A$, resolving an open problem of Aaronson [2]. Our proof uses the polynomial method to ... more >>>
This paper proves new limitations on the power of quantum computers to solve approximate counting---that is, multiplicatively estimating the size of a nonempty set $S\subseteq [N]$.
Given only a membership oracle for $S$, it is well known that approximate counting takes $\Theta(\sqrt{N/|S|})$ quantum queries. But what if a quantum algorithm ... more >>>
We give two results on the size of AC0 circuits computing promise majority. $\epsilon$-promise majority is majority promised that either at most an $\epsilon$ fraction of the input bits are 1, or at most $\epsilon$ are 0.
First, we show super quadratic lower bounds on both monotone and general depth ... more >>>
For any fixed $t$, we present two fine-grained reductions of the problem of approximately counting the number of $t$-cliques in a graph to the problem of detecting a $t$-clique in a graph.
One of our reductions is slightly better than the prior reduction of Dell, Lapinskas, and Meeks (SODA20) and ...
more >>>