<html>
Prior results show that most bounded query hierarchies cannot
contain finite gaps. For example, it is known that
<center>
P<sub>(<i>m</i>+1)-tt</sub><sup>SAT</sup> = P<sub><i>m</i>-tt</sub><sup>SAT</sup> implies P<sub>btt</sub><sup>SAT</sup> = P<sub><i>m</i>-tt</sub><sup>SAT</sup>
</center>
and for all sets <i>A</i>
<ul>
<li> FP<sub>(<i>m</i>+1)-tt</sub><sup><i>A</i></sup> = FP<sub><i>m</i>-tt</sub><sup><i>A</i></sup> implies FP<sub>btt</sub><sup><i>A</i></sup> = FP<sub><i>m</i>-tt</sub><sup><i>A</i></sup>
</li>
<li> P<sub>(<i>m</i>+1)-T</sub><sup><i>A</i></sup> = P<sub><i>m</i>-T</sub><sup><i>A</i></sup> implies P<sub>bT</sub><sup><i>A</i></sup> = ...
more >>>
A recursive enumerator for a function $h$ is an algorithm $f$ which
enumerates for an input $x$ finitely many elements including $h(x)$.
$f$ is an $k(n)$-enumerator if for every input $x$ of length $n$, $h(x)$
is among the first $k(n)$ elements enumerated by $f$.
If there is a $k(n)$-enumerator for ...
more >>>
For a function $t : 2^\star \to 1^\star$, let $C_t$ be the set of problems decidable on input $x$ in time at most $t(x)$ almost everywhere. The Union Theorem of Meyer and McCreight asserts that any union $\bigcup_{i < \omega} C_{t_i}$ for a uniformly recursive sequence of bounds $t_i$ is ... more >>>