Paul Beame

Proof complexity, the study of the lengths of proofs in

propositional logic, is an area of study that is fundamentally connected

both to major open questions of computational complexity theory and

to practical properties of automated theorem provers. In the last

decade, there have been a number of significant advances ...
more >>>

Suryajith Chillara, Coral Grichener, Amir Shpilka

We say that two given polynomials $f, g \in R[x_1, \ldots, x_n]$, over a ring $R$, are equivalent under shifts if there exists a vector $(a_1, \ldots, a_n)\in R^n$ such that $f(x_1+a_1, \ldots, x_n+a_n) = g(x_1, \ldots, x_n)$. This is a special variant of the polynomial projection problem in Algebraic ... more >>>