In 1977 Valiant proposed a graph theoretical method for proving lower
bounds on algebraic circuits with gates computing linear functions.
He used this method to reduce the problem of proving
lower bounds on circuits with linear gates to to proving lower bounds
on the rigidity of a matrix, a ...
more >>>
We consider bounded depth circuits over an arbitrary field $K$. If the field $K$ is finite, then we allow arbitrary gates $K^n\to K$. For instance, in the case of field $GF(2)$ we allow any Boolean gates. If the field $K$ is infinite, then we allow only polinomials.
For every fixed ... more >>>
We put forth several simple candidate pseudorandom functions f_k : {0,1}^n -> {0,1} with security (a.k.a. hardness) 2^n that are inspired by the AES block-cipher by Daemen and Rijmen (2000). The functions are computable more efficiently, and use a shorter key (a.k.a. seed) than previous
constructions. In particular, we ...
more >>>
In this paper we suggest a modification of classical Lupanov's method [Lupanov1958]
that allows building circuits over the basis $\{\&,\vee,\neg\}$ for Boolean functions of $n$ variables with size at most
$$
\frac{2^n}{n}\left(1+\frac{3\log n + O(1)}{n}\right),
$$
and with more uniform distribution of outgoing arcs by circuit gates.
For almost all ... more >>>
We draw two incomplete, biased maps of challenges in
computational complexity lower bounds. Our aim is to put
these challenges in perspective, and to present some
connections which do not seem widely known.
We construct a PCP for NTIME(2$^n$) with constant
soundness, $2^n \poly(n)$ proof length, and $\poly(n)$
queries where the verifier's computation is simple: the
queries are a projection of the input randomness, and the
computation on the prover's answers is a 3CNF. The
previous upper bound for these two computations was
more >>>
We study which functions can be computed by efficient circuits whose gate connections are very easy to compute. We give quasilinear-size circuits for sorting whose connections can be computed by decision trees with depth logarithmic in the length of the gate description. We also show that NL has NC$^2$ circuits ... more >>>
We exhibit $\epsilon$-biased distributions $D$
on $n$ bits and functions $f\colon \{0,1\}^n
\to \{0,1\}$ such that the xor of two independent
copies ($D+D$) does not fool $f$, for any of the
following choices:
1. $\epsilon = 2^{-\Omega(n)}$ and $f$ is in P/poly;
2. $\epsilon = 2^{-\Omega(n/\log n)}$ and $f$ is ... more >>>
We introduce the notion of monotone linear programming circuits (MLP circuits), a model of
computation for partial Boolean functions. Using this model, we prove the following results:
1. MLP circuits are superpolynomially stronger than monotone Boolean circuits.
2. MLP circuits are exponentially stronger than monotone span programs.
3. ...
more >>>
We consider the univariate polynomial $f_d:=(x+1)^d$ when represented as a sum of constant-powers of univariate polynomials. We define a natural measure for the model, the support-union, and conjecture that it is $\Omega(d)$ for $f_d$.
We show a stunning connection of the conjecture to the two main problems in algebraic ... more >>>
Finding exact circuit size is a notorious optimization problem in practice. Whereas modern computers and algorithmic techniques allow to find a circuit of size seven in blink of an eye, it may take more than a week to search for a circuit of size thirteen. One of the reasons of ... more >>>