Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > PCP OF PROXIMITY:
Reports tagged with PCP of Proximity:
TR08-064 | 11th July 2008
Or Meir

On the Efficiency of Non-Uniform PCPP Verifiers

We define a non-uniform model of PCPs of Proximity, and observe that in this model the non-uniform verifiers can always be made very efficient. Specifically, we show that any non-uniform verifier can be modified to run in time that is roughly polynomial in its randomness and query complexity.

more >>>

TR11-104 | 3rd August 2011
Or Meir

Combinatorial PCPs with efficient verifiers

Revisions: 3

The PCP theorem asserts the existence of proofs that can be verified by a verifier that reads only a very small part of the proof. The theorem was originally proved by Arora and Safra (J. ACM 45(1)) and Arora et al. (J. ACM 45(3)) using sophisticated algebraic tools. More than ... more >>>


TR13-134 | 25th September 2013
Or Meir

Combinatorial PCPs with Short Proofs

The PCP theorem (Arora et. al., J. ACM 45(1,3)) asserts the existence of proofs that can be verified by reading a very small part of the proof. Since the discovery of the theorem, there has been a considerable work on improving the theorem in terms of the length of the ... more >>>


TR18-050 | 15th March 2018
Irit Dinur, Oded Goldreich, Tom Gur

Every set in P is strongly testable under a suitable encoding

We show that every set in $\cal P$ is strongly testable under a suitable encoding. By ``strongly testable'' we mean having a (proximity oblivious) tester that makes a constant number of queries and rejects with probability that is proportional to the distance of the tested object from the property. By ... more >>>


TR20-010 | 12th February 2020
Lijie Chen, Hanlin Ren

Strong Average-Case Circuit Lower Bounds from Non-trivial Derandomization

We prove that for all constants a, NQP = NTIME[n^{polylog(n)}] cannot be (1/2 + 2^{-log^a n})-approximated by 2^{log^a n}-size ACC^0 of THR circuits (ACC^0 circuits with a bottom layer of THR gates). Previously, it was even open whether E^NP can be (1/2+1/sqrt{n})-approximated by AC^0[2] circuits. As a straightforward application, ... more >>>




ISSN 1433-8092 | Imprint