Scott Aaronson, Salman Beigi, Andrew Drucker, Bill Fefferman, Peter Shor

The class QMA(k), introduced by Kobayashi et al., consists

of all languages that can be verified using k unentangled quantum

proofs. Many of the simplest questions about this class have remained

embarrassingly open: for example, can we give any evidence that k

quantum proofs are more powerful than one? Can ...
more >>>

Scott Aaronson

Whether the class QMA (Quantum Merlin Arthur) is equal to QMA1, or QMA with one-sided error, has been an open problem for years. This note helps to explain why the problem is difficult, by using ideas from real analysis to give a "quantum oracle" relative to which QMA and QMA1 ... more >>>

Scott Aaronson

We show that any quantum algorithm to decide whether a function $f:\left[n\right] \rightarrow\left[ n\right] $ is a permutation or far from a permutation\ must make $\Omega\left( n^{1/3}/w\right) $ queries to $f$, even if the algorithm is given a $w$-qubit quantum witness in support of $f$ being a permutation. This implies ... more >>>

Alessandro Chiesa, Michael Forbes

We present three contributions to the understanding of QMA with multiple provers:

1) We give a tight soundness analysis of the protocol of [Blier and Tapp, ICQNM '09], yielding a soundness gap $\Omega(N^{-2})$, which is the best-known soundness gap for two-prover QMA protocols with logarithmic proof size. Maybe ...
more >>>

Scott Aaronson

This mini-course will introduce participants to an exciting frontier for quantum computing theory: namely, questions involving the computational complexity of preparing a certain quantum state or applying a certain unitary transformation. Traditionally, such questions were considered in the context of the Nonabelian Hidden Subgroup Problem and quantum interactive proof systems, ... more >>>