Mergers are functions that transform k (possibly dependent)
random sources into a single random source, in a way that ensures
that if one of the input sources has min-entropy rate $\delta$
then the output has min-entropy rate close to $\delta$. Mergers
have proven to be a very useful tool in ...
more >>>
Mergers are functions that transform k (possibly dependent) random sources into a single random source, in a way that ensures that if one of the input sources has min-entropy rate $\delta$ then the output has min-entropy rate close to $\delta$. Mergers have proven to be a very useful tool in ... more >>>
A merger is a probabilistic procedure which extracts the
randomness out of any (arbitrarily correlated) set of random
variables, as long as one of them is uniform. Our main result is
an efficient, simple, optimal (to constant factors) merger, which,
for $k$ random vairables on $n$ bits each, uses a ...
more >>>
The finite field Kakeya problem deals with the way lines in different directions can overlap in a vector space over a finite field. This problem came up in the study of certain Euclidean problems and, independently, in the search for explicit randomness extractors. We survey recent progress on this problem ... more >>>
We introduce and construct a pseudorandom object which we call a local correlation breaker (LCB). Informally speaking, an LCB is a function that gets as input a sequence of $r$ (arbitrarily correlated) random variables and an independent weak-source. The output of the LCB is a sequence of $r$ random variables ... more >>>