We introduce a new Turing machine based concept of time complexity for functions on computable metric spaces. It generalizes the ordinary complexity of word functions and the complexity of real functions studied by Ko \cite{Ko91} et al. Although this definition of ${\rm TIME}$ as the maximum of a generally infinite ... more >>>
We design a polynomial time approximation scheme (PTAS) for
the problem of Metric MIN-BISECTION of dividing a given finite metric
space into two halves so as to minimize the sum of distances across
that partition. The method of solution depends on a new metric placement
partitioning ...
more >>>
We survey some recent results on the complexity of computing
approximate solutions for instances of the Minimum Bisection problem
and formulate some intriguing and still open questions about the
approximability status of that problem. Some connections to other
optimization problems are also indicated.
We give a 1.25 approximation algorithm for the Steiner Tree Problem with distances one and two, improving on the best known bound for that problem.
more >>>For a set $\Pi$ in a metric space and $\delta>0$, denote by $\mathcal{F}_\delta(\Pi)$ the set of elements that are $\delta$-far from $\Pi$. In property testing, a $\delta$-tester for $\Pi$ is required to accept inputs from $\Pi$ and reject inputs from $\mathcal{F}_\delta(\Pi)$. A natural dual problem is the problem of $\delta$-testing ... more >>>