Eric Allender, Michal Koucky

We observe that many important computational problems in NC^1 share a simple self-reducibility property. We then show that, for any problem A having this self-reducibility property, A has polynomial size TC^0 circuits if and only if it has TC^0 circuits of size n^{1+\epsilon} for every \epsilon > 0 (counting the ... more >>>

Eric Miles, Emanuele Viola

We put forth several simple candidate pseudorandom functions f_k : {0,1}^n -> {0,1} with security (a.k.a. hardness) 2^n that are inspired by the AES block-cipher by Daemen and Rijmen (2000). The functions are computable more efficiently, and use a shorter key (a.k.a. seed) than previous

constructions. In particular, we ...
more >>>

Marco Carmosino, Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova

Circuit analysis algorithms such as learning, SAT, minimum circuit size, and compression imply circuit lower bounds. We show a generic implication in the opposite direction: natural properties (in the sense of Razborov and Rudich) imply randomized learning and compression algorithms. This is the first such implication outside of the derandomization ... more >>>

Joshua Grochow, Mrinal Kumar, Michael Saks, Shubhangi Saraf

We observe that a certain kind of algebraic proof - which covers essentially all known algebraic circuit lower bounds to date - cannot be used to prove lower bounds against VP if and only if what we call succinct hitting sets exist for VP. This is analogous to the Razborov-Rudich ... more >>>

Andrej Bogdanov

A small-biased function is a randomized function whose distribution of truth-tables is small-biased. We demonstrate that known explicit lower bounds on the size of (1) general Boolean formulas, (2) Boolean formulas of fan-in two, (3) de Morgan formulas, as well as (4) correlation lower bounds against small de Morgan formulas ... more >>>

Moritz Müller, Ján Pich

We ask for feasibly constructive proofs of known circuit lower bounds for explicit functions on bit strings of length $n$. In 1995 Razborov showed that many can be proved in Cook’s theory $PV_1$, a bounded arithmetic formalizing polynomial time reasoning. He formalized circuit lower bound statements for small $n$ of ... more >>>

Rahul Santhanam

We explore the possibility of basing one-way functions on the average-case hardness of the fundamental Minimum Circuit Size Problem (MCSP[$s$]), which asks whether a Boolean function on $n$ bits specified by its truth table has circuits of size $s(n)$.

1. (Pseudorandomness from Zero-Error Average-Case Hardness) We show that for ... more >>>

Igor Carboni Oliveira, Lijie Chen, Shuichi Hirahara, Ján Pich, Ninad Rajgopal, Rahul Santhanam

Hardness magnification reduces major complexity separations (such as $EXP \not\subseteq NC^1$) to proving lower bounds for some natural problem $Q$ against weak circuit models. Several recent works [OS18, MMW19, CT19, OPS19, CMMW19, Oli19, CJW19a] have established results of this form. In the most intriguing cases, the required lower bound is ... more >>>

Gal Vardi, Ohad Shamir

In studying the expressiveness of neural networks, an important question is whether there are functions which can only be approximated by sufficiently deep networks, assuming their size is bounded. However, for constant depths, existing results are limited to depths $2$ and $3$, and achieving results for higher depths has been ... more >>>