The parallel repetition theorem states that for any two-prover game,
with value $1- \epsilon$ (for, say, $\epsilon \leq 1/2$), the value of
the game repeated in parallel $n$ times is at most
$(1- \epsilon^c)^{\Omega(n/s)}$, where $s$ is the answers' length
(of the original game) and $c$ is a universal ...
more >>>