In this work we relate the deterministic
complexity of factoring polynomials (over
finite
fields) to certain combinatorial objects we
call
m-schemes. We extend the known conditional
deterministic subexponential time polynomial
factoring algorithm for finite fields to get an
underlying m-scheme. We demonstrate ...
more >>>
In this paper we develop techniques that eliminate the need of the Generalized
Riemann Hypothesis (GRH) from various (almost all) known results about deterministic
polynomial factoring over finite fields. Our main result shows that given a
polynomial f(x) of degree n over a finite field k, we ...
more >>>
The problem of finding a nontrivial factor of a polynomial $f(x)$ over a finite field $\mathbb{F}_q$ has many known efficient, but randomized, algorithms. The deterministic complexity of this problem is a famous open question even assuming the generalized Riemann hypothesis (GRH). In this work we improve the state of the ... more >>>
Constructing $r$-th nonresidue over a finite field is a fundamental computational problem. A related problem is to construct an irreducible polynomial of degree $r^e$ (where $r$ is a prime) over a given finite field $\F_q$ of characteristic $p$ (equivalently, constructing the bigger field $\F_{q^{r^e}}$). Both these problems have famous randomized ... more >>>