Dan Gutfreund, Guy Rothblum

We study the complexity of locally list-decoding binary error correcting codes with good parameters (that are polynomially related to information theoretic bounds). We show that computing majority over $\Theta(1/\eps)$ bits is essentially equivalent to locally list-decoding binary codes from relative distance $1/2-\eps$ with list size $\poly(1/\eps)$. That is, a local-decoder ... more >>>

Sourav Chakraborty, Eldar Fischer, Arie Matsliah

We investigate the problem of {\em local reconstruction}, as defined by Saks and Seshadhri (2008), in the context of error correcting codes.

The first problem we address is that of {\em message reconstruction}, where given oracle access to a corrupted encoding $w \in \zo^n$ of some message $x \in \zo^k$ ... more >>>

Srikanth Srinivasan, Madhu Sudan

The well-known DeMillo-Lipton-Schwartz-Zippel lemma says that $n$-variate

polynomials of total degree at most $d$ over

grids, i.e. sets of the form $A_1 \times A_2 \times \cdots \times A_n$, form

error-correcting codes (of distance at least $2^{-d}$ provided $\min_i\{|A_i|\}\geq 2$).

In this work we explore their local

decodability and local testability. ...
more >>>

Sivakanth Gopi, Venkatesan Guruswami, Sergey Yekhanin

In recent years the explosion in the volumes of data being stored online has resulted in distributed storage systems transitioning to erasure coding based schemes. Local Reconstruction Codes (LRCs) have emerged as the codes of choice for these applications. An $(n,r,h,a,q)$-LRC is a $q$-ary code, where encoding is as a ... more >>>