Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > REED-SOLOMON CODES:
Reports tagged with Reed-Solomon codes:
TR04-040 | 4th May 2004
Venkatesan Guruswami, Alexander Vardy

Maximum-likelihood decoding of Reed-Solomon codes is NP-hard

Maximum-likelihood decoding is one of the central algorithmic
problems in coding theory. It has been known for over 25 years
that maximum-likelihood decoding of general linear codes is
NP-hard. Nevertheless, it was so far unknown whether maximum-
likelihood decoding remains hard for any specific family of
more >>>


TR05-132 | 8th November 2005
Venkatesan Guruswami

Algebraic-geometric generalizations of the Parvaresh-Vardy codes

This paper is concerned with a new family of error-correcting codes
based on algebraic curves over finite fields, and list decoding
algorithms for them. The basic goal in the subject of list decoding is
to construct error-correcting codes $C$ over some alphabet $\Sigma$
which have good rate $R$, and at ... more >>>


TR08-036 | 14th March 2008
Venkatesan Guruswami, Atri Rudra

Soft decoding, dual BCH codes, and better list-decodable eps-biased codes

We construct binary linear codes that are efficiently list-decodable
up to a fraction $(1/2-\eps)$ of errors. The codes encode $k$ bits
into $n = {\rm poly}(k/\eps)$ bits and are constructible and
list-decodable in time polynomial in $k$ and $1/\eps$ (in
particular, in our results $\eps$ need ... more >>>


TR09-001 | 26th November 2008
Venkatesan Guruswami

Artin automorphisms, Cyclotomic function fields, and Folded list-decodable codes

Algebraic codes that achieve list decoding capacity were recently
constructed by a careful ``folding'' of the Reed-Solomon code. The
``low-degree'' nature of this folding operation was crucial to the list
decoding algorithm. We show how such folding schemes conducive to list
decoding arise out of the Artin-Frobenius automorphism at primes ... more >>>


TR11-080 | 11th May 2011
mohammad iftekhar husain, steve ko, Atri Rudra, steve uurtamo

Storage Enforcement with Kolmogorov Complexity and List Decoding

We consider the following problem that arises in outsourced storage: a user stores her data $x$ on a remote server but wants to audit the server at some later point to make sure it actually did store $x$. The goal is to design a (randomized) verification protocol that has the ... more >>>


TR12-036 | 12th April 2012
Venkatesan Guruswami, Chaoping Xing

Folded Codes from Function Field Towers and Improved Optimal Rate List Decoding

We give a new construction of algebraic codes which are efficiently list decodable from a fraction $1-R-\epsilon$ of adversarial errors where $R$ is the rate of the code, for any desired positive constant $\epsilon$. The worst-case list size output by the algorithm is $O(1/\epsilon)$, matching the existential bound for random ... more >>>


TR13-060 | 10th April 2013
Venkatesan Guruswami, Swastik Kopparty

Explicit Subspace Designs

A subspace design is a collection $\{H_1,H_2,\dots,H_M\}$ of subspaces of ${\mathbf F}_q^m$ with the property that no low-dimensional subspace $W$ of ${\mathbf F}_q^m$ intersects too many subspaces of the collection. Subspace designs were introduced by Guruswami and Xing (STOC 2013) who used them to give a randomized construction of optimal ... more >>>


TR13-140 | 8th October 2013
Atri Rudra, Mary Wootters

Every list-decodable code for high noise has abundant near-optimal rate puncturings

We show that any $q$-ary code with sufficiently good distance can be randomly punctured to obtain, with high probability, a code that is list decodable up to radius $1 - 1/q - \epsilon$ with near-optimal rate and list sizes.

Our results imply that ``most" Reed-Solomon codes are list decodable ... more >>>


TR15-117 | 21st July 2015
Boris Bukh, Venkatesan Guruswami

An improved bound on the fraction of correctable deletions

Revisions: 1

We consider codes over fixed alphabets against worst-case symbol deletions. For any fixed $k \ge 2$, we construct a family of codes over alphabet of size $k$ with positive rate, which allow efficient recovery from a worst-case deletion fraction approaching $1-\frac{2}{k+1}$. In particular, for binary codes, we are able to ... more >>>


TR16-176 | 9th November 2016
Venkata Gandikota, Badih Ghazi, Elena Grigorescu

NP-Hardness of Reed-Solomon Decoding, and the Prouhet-Tarry-Escott Problem

Establishing the complexity of {\em Bounded Distance Decoding} for Reed-Solomon codes is a fundamental open problem in coding theory, explicitly asked by Guruswami and Vardy (IEEE Trans. Inf. Theory, 2005). The problem is motivated by the large current gap between the regime when it is NP-hard, and the regime when ... more >>>


TR20-070 | 4th May 2020
Ben Lund, Aditya Potukuchi

On the list recoverability of randomly punctured codes

Revisions: 1

We show that a random puncturing of a code with good distance is list recoverable beyond the Johnson bound.
In particular, this implies that there are Reed-Solomon codes that are list recoverable beyond the Johnson bound.
It was previously known that there are Reed-Solomon codes that do not have this ... more >>>


TR20-083 | 30th May 2020
Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, Shubhangi Saraf

Proximity Gaps for Reed-Solomon Codes

Revisions: 3

A collection of sets displays a proximity gap with respect to some property if for every set in the collection, either (i) all members are $\delta$-close to the property in relative Hamming distance or (ii) only a tiny fraction of members are $\delta$-close to the property. In particular, no set ... more >>>


TR20-172 | 13th November 2020
Venkatesan Guruswami, Chaoping Xing

Optimal rate list decoding over bounded alphabets using algebraic-geometric codes

We construct two classes of algebraic code families which are efficiently list decodable with small output list size from a fraction $1-R-\epsilon$ of adversarial errors where $R$ is the rate of the code, for any desired positive constant $\epsilon$. The alphabet size depends only on $\epsilon$ and is nearly-optimal.

The ... more >>>


TR21-139 | 24th September 2021
Venkatesan Guruswami, Jonathan Mosheiff

Punctured Large Distance Codes, and Many Reed-Solomon Codes, Achieve List-Decoding Capacity

Revisions: 2

We prove the existence of Reed-Solomon codes of any desired rate $R \in (0,1)$ that are combinatorially list-decodable up to a radius approaching $1-R$, which is the information-theoretic limit. This is established by starting with the full-length $[q,k]_q$ Reed-Solomon code over a field $\mathbb{F}_q$ that is polynomially larger than the ... more >>>


TR23-125 | 25th August 2023
Omar Alrabiah, Venkatesan Guruswami, Ray Li

Randomly punctured Reed-Solomon codes achieve list-decoding capacity over linear-sized fields

Reed-Solomon codes are a classic family of error-correcting codes consisting of evaluations of low-degree polynomials over a finite field on some sequence of distinct field elements. They are widely known for their optimal unique-decoding capabilities, but their list-decoding capabilities are not fully understood. Given the prevalence of Reed-Solomon codes, a ... more >>>




ISSN 1433-8092 | Imprint