We give an $O(N\cdot \log N\cdot 2^{O(\log^*N)})$ algorithm for
multiplying two $N$-bit integers that improves the $O(N\cdot \log
N\cdot \log\log N)$ algorithm by
Sch\"{o}nhage-Strassen. Both these algorithms use modular
arithmetic. Recently, F\"{u}rer gave an $O(N\cdot \log
N\cdot 2^{O(\log^*N)})$ algorithm which however uses arithmetic over
complex numbers as opposed to ...
more >>>