We prove that binary linear concatenated codes with an outer algebraic code (specifically, a folded Reed-Solomon code) and independently and randomly chosen linear inner codes achieve the list-decoding capacity with high probability. In particular, for any $0 < \rho < 1/2$ and $\epsilon > 0$, there exist concatenated codes of ... more >>>
In this work, we show new and improved error-correcting properties of folded Reed-Solomon codes and multiplicity codes. Both of these families of codes are based on polynomials over finite fields, and both have been the sources of recent advances in coding theory. Folded Reed-Solomon codes were the first explicit constructions ... more >>>
An $(n,r,h,a,q)$-Local Reconstruction Code is a linear code over $\mathbb{F}_q$ of length $n$, whose codeword symbols are partitioned into $n/r$ local groups each of size $r$. Each local group satisfies `$a$' local parity checks to recover from `$a$' erasures in that local group and there are further $h$ global parity ... more >>>
In this work, we present an abstract framework for some algebraic error-correcting codes with the aim of capturing codes that are list-decodable to capacity, along with their decoding algorithm. In the polynomial ideal framework, a code is specified by some ideals in a polynomial ring, messages are polynomials and their ... more >>>
We show that the known list-decoding algorithms for univariate multiplicity and folded Reed-Solomon (FRS) codes can be made to run in nearly-linear time. This yields, to the best of our knowledge, the first known family of codes that can be decoded (and encoded) in nearly linear time, even as they ... more >>>