We study several properties of sets that are complete for NP.
We prove that if $L$ is an NP-complete set and $S \not\supseteq L$ is a p-selective sparse set, then $L - S$ is many-one-hard for NP. We demonstrate existence of a sparse set $S \in \mathrm{DTIME}(2^{2^{n}})$
such ...
more >>>
We show the following results regarding complete sets:
NP-complete sets and PSPACE-complete sets are many-one
autoreducible.
Complete sets of any level of PH, MODPH, or
the Boolean hierarchy over NP are many-one autoreducible.
EXP-complete sets are many-one mitotic.
NEXP-complete sets are weakly many-one mitotic.
PSPACE-complete sets are weakly Turing-mitotic.
... more >>>The Hartmanis--Immerman--Sewelson theorem is the classical link between the exponential and the polynomial time realm. It states that NE = E if, and only if, every sparse set in NP lies in P. We establish similar links for classes other than sparse sets:
1. E = UE if, and only ... more >>>