Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > SAMPLABLE DISTRIBUTIONS:
Reports tagged with Samplable distributions:
TR00-084 | 6th November 2000
Salil Vadhan, Amit Sahai

A Complete Problem for Statistical Zero Knowledge

We present the first complete problem for SZK, the class of (promise)
problems possessing statistical zero-knowledge proofs (against an
honest verifier). The problem, called STATISTICAL DIFFERENCE, is to
decide whether two efficiently samplable distributions are either
statistically close or far apart. This gives a new characterization
of SZK that makes ... more >>>


TR05-145 | 5th December 2005
Ronen Shaltiel

How to get more mileage from randomness extractors

Let $\cal C$ be a class of distributions over $\B^n$. A deterministic randomness extractor for $\cal C$ is a function $E:\B^n \ar \B^m$ such that for any $X$ in $\cal C$ the distribution $E(X)$ is statistically close to the uniform distribution. A long line of research deals with explicit constructions ... more >>>


TR10-091 | 14th May 2010
Nikolay Vereshchagin

An Encoding Invariant Version of Polynomial Time Computable Distributions

When we represent a decision problem,like CIRCUIT-SAT, as a language over the binary alphabet,
we usually do not specify how to encode instances by binary strings.
This relies on the empirical observation that the truth of a statement of the form ``CIRCUIT-SAT belongs to a complexity class $C$''
more >>>


TR23-071 | 8th May 2023
Yuval Filmus, Itai Leigh, Artur Riazanov, Dmitry Sokolov

Sampling and Certifying Symmetric Functions

A circuit $\mathcal{C}$ samples a distribution $\mathbf{X}$ with an error $\epsilon$ if the statistical distance between the output of $\mathcal{C}$ on the uniform input and $\mathbf{X}$ is $\epsilon$. We study the hardness of sampling a uniform distribution over the set of $n$-bit strings of Hamming weight $k$ denoted by $\mathbf{U}^n_k$ ... more >>>


TR24-168 | 3rd November 2024
Ronen Shaltiel

Multiplicative Extractors for Samplable Distributions

Revisions: 2

Trevisan and Vadhan (FOCS 2000) introduced the notion of (seedless) extractors for samplable distributions as a possible solution to the problem of extracting random keys for cryptographic protocols from weak sources of randomness.
They showed that under a very strong complexity theoretic assumption, there exists a constant $\alpha>0$ such that ... more >>>


TR24-204 | 16th December 2024
Marshall Ball, Ronen Shaltiel, Jad Silbak

Extractors for Samplable Distributions with Low Min-Entropy

Trevisan and Vadhan (FOCS 2000) introduced the notion of (seedless) extractors for samplable distributions. They showed that under a very strong complexity theoretic hardness assumption, there are extractors for samplable distributions with large min-entropy of $k=(1-\gamma) \cdot n$, for some small constant $\gamma>0$. Recent work by Ball, Goldin, Dachman-Soled and ... more >>>


TR25-107 | 30th July 2025
Justin Oh, Ronen Shaltiel

Extractors for Samplable Distributions from the Two-Source Extractor Recipe

Revisions: 1

Trevisan and Vadhan [TV00] first constructed seedless extractors for distributions samplable by poly-size circuits under the very strong complexity theoretic hardness assumption that $E=DTIME(2^{O(n)})$ is hard for exponential size circuits with oracle access to $\Sigma_6^{P}$. Their construction works when the distribution has large min-entropy $k=(1-\gamma) \cdot n$, for small constant ... more >>>


TR25-177 | 14th November 2025
Yaroslav Alekseev, Mika Göös, Konstantin Myasnikov, Artur Riazanov, Dmitry Sokolov

Sampling Permutations with Cell Probes is Hard

Suppose we are given an infinite sequence of input cells, each initialized with a uniform random symbol from $[n]$. How hard is it to output a sequence in $[n]^n$ that is close to a uniform random permutation? Viola (SICOMP 2020) conjectured that if each output cell is computed by making ... more >>>




ISSN 1433-8092 | Imprint