Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > QUANTUM CRYPTOGRAPHY:
Reports tagged with quantum cryptography:
TR05-146 | 25th November 2005
Gábor Erdèlyi, Tobias Riege, Jörg Rothe

Quantum Cryptography: A Survey

Revisions: 2

We survey some results in quantum cryptography. After a brief
introduction to classical cryptography, we provide the physical and
mathematical background needed and present some fundamental protocols
from quantum cryptography, including quantum key distribution and
quantum bit commitment protocols.

more >>>

TR10-165 | 4th November 2010
Dmytro Gavinsky, Tsuyoshi Ito

Quantum Fingerprints that Keep Secrets

We introduce a new type of cryptographic primitive that we call hiding fingerprinting. No classical fingerprinting scheme is hiding. We construct quantum hiding fingerprinting schemes and argue their optimality.

more >>>

TR12-024 | 25th March 2012
Scott Aaronson, Paul Christiano

Quantum Money from Hidden Subspaces

Forty years ago, Wiesner pointed out that quantum mechanics raises the striking possibility of money that cannot be counterfeited according to the laws of physics. We propose the first quantum money scheme that is (1) public-key, meaning that anyone can verify a banknote as genuine, not only the bank that ... more >>>


TR22-140 | 10th October 2022
Sam Gunn, Nathan Ju, Fermi Ma, Mark Zhandry

Commitments to Quantum States

Revisions: 1

What does it mean to commit to a quantum state? In this work, we propose a simple answer: a commitment to quantum messages is binding if, after the commit phase, the committed state is hidden from the sender's view. We accompany this new definition with several instantiations. We build the ... more >>>


TR24-156 | 7th October 2024
Bruno Pasqualotto Cavalar, Eli Goldin, Matthew Gray, Peter Hall

A Meta-Complexity Characterization of Quantum Cryptography

We prove the first meta-complexity characterization of a quantum cryptographic primitive. We show that one-way puzzles exist if and only if there is some quantum samplable distribution of binary strings over which it is hard to approximate Kolmogorov complexity. Therefore, we characterize one-way puzzles by the average-case hardness of a ... more >>>




ISSN 1433-8092 | Imprint