Gábor Erdèlyi, Tobias Riege, Jörg Rothe

We survey some results in quantum cryptography. After a brief

introduction to classical cryptography, we provide the physical and

mathematical background needed and present some fundamental protocols

from quantum cryptography, including quantum key distribution and

quantum bit commitment protocols.

Dmytro Gavinsky, Tsuyoshi Ito

We introduce a new type of cryptographic primitive that we call hiding fingerprinting. No classical fingerprinting scheme is hiding. We construct quantum hiding fingerprinting schemes and argue their optimality.

more >>>Scott Aaronson, Paul Christiano

Forty years ago, Wiesner pointed out that quantum mechanics raises the striking possibility of money that cannot be counterfeited according to the laws of physics. We propose the first quantum money scheme that is (1) public-key, meaning that anyone can verify a banknote as genuine, not only the bank that ... more >>>

Sam Gunn, Nathan Ju, Fermi Ma, Mark Zhandry

What does it mean to commit to a quantum state? In this work, we propose a simple answer: a commitment to quantum messages is binding if, after the commit phase, the committed state is hidden from the sender's view. We accompany this new definition with several instantiations. We build the ... more >>>