Michael Langberg

A $k$-uniform hypergraph $G$ of size $n$ is said to be $\varepsilon$-far from having an independent set of size $\rho n$ if one must remove at least $\varepsilon n^k$ edges of $G$ in order for the remaining hypergraph to have an independent set of size $\rho n$. In this work, ... more >>>

Magnus Bordewich, Martin Dyer, Marek Karpinski

We give a new method for analysing the mixing time of a Markov chain using

path coupling with stopping times. We apply this approach to two hypergraph

problems. We show that the Glauber dynamics for independent sets in a

hypergraph mixes rapidly as long as the maximum degree $\Delta$ of ...
more >>>

Magnus Bordewich, Martin Dyer, Marek Karpinski

In this paper we examine the importance of the choice of metric in path coupling, and the relationship of this to \emph{stopping time analysis}. We give strong evidence that stopping time analysis is no more powerful than standard path coupling. In particular, we prove a stronger theorem for path coupling ... more >>>

Subhash Khot, Rishi Saket

We show that it is quasi-NP-hard to color $2$-colorable $12$-uniform hypergraphs with $2^{(\log n)^{\Omega(1) }}$ colors where $n$ is the number of vertices. Previously, Guruswami et al. [GHHSV14] showed that it is quasi-NP-hard to color $2$-colorable $8$-uniform hypergraphs with $2^{2^{\Omega(\sqrt{\log \log n})}}$ colors. Their result is obtained by composing a ... more >>>

Max Bannach, Zacharias Heinrich, RĂ¼diger Reischuk, Till Tantau

Computing kernels for the hitting set problem (the problem of

finding a size-$k$ set that intersects each hyperedge of a

hypergraph) is a well-studied computational problem. For hypergraphs

with $m$ hyperedges, each of size at most~$d$, the best algorithms

can compute kernels of size $O(k^d)$ in ...
more >>>

Michal Koucky, Vojtech Rodl, Navid Talebanfard

We show that for every $r \ge 2$ there exists $\epsilon_r > 0$ such that any $r$-uniform hypergraph on $m$ edges with bounded vertex degree has a set of at most $(\frac{1}{2} - \epsilon_r)m$ edges the removal of which breaks the hypergraph into connected components with at most $m/2$ edges. ... more >>>