Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

Reports tagged with hypergraph:
TR03-076 | 8th September 2003
Michael Langberg

Testing the independence number of hypergraphs

A $k$-uniform hypergraph $G$ of size $n$ is said to be $\varepsilon$-far from having an independent set of size $\rho n$ if one must remove at least $\varepsilon n^k$ edges of $G$ in order for the remaining hypergraph to have an independent set of size $\rho n$. In this work, ... more >>>

TR05-002 | 6th January 2005
Magnus Bordewich, Martin Dyer, Marek Karpinski

Path Coupling Using Stopping Times and Counting Independent Sets and Colourings in Hypergraphs

We give a new method for analysing the mixing time of a Markov chain using
path coupling with stopping times. We apply this approach to two hypergraph
problems. We show that the Glauber dynamics for independent sets in a
hypergraph mixes rapidly as long as the maximum degree $\Delta$ of ... more >>>

TR05-151 | 7th December 2005
Magnus Bordewich, Martin Dyer, Marek Karpinski

Metric Construction, Stopping Times and Path Coupling.

In this paper we examine the importance of the choice of metric in path coupling, and the relationship of this to \emph{stopping time analysis}. We give strong evidence that stopping time analysis is no more powerful than standard path coupling. In particular, we prove a stronger theorem for path coupling ... more >>>

TR14-051 | 12th April 2014
Subhash Khot, Rishi Saket

Hardness of Coloring $2$-Colorable $12$-Uniform Hypergraphs with $2^{(\log n)^{\Omega(1)}}$ Colors

We show that it is quasi-NP-hard to color $2$-colorable $12$-uniform hypergraphs with $2^{(\log n)^{\Omega(1) }}$ colors where $n$ is the number of vertices. Previously, Guruswami et al. [GHHSV14] showed that it is quasi-NP-hard to color $2$-colorable $8$-uniform hypergraphs with $2^{2^{\Omega(\sqrt{\log \log n})}}$ colors. Their result is obtained by composing a ... more >>>

TR19-146 | 31st October 2019
Max Bannach, Zacharias Heinrich, RĂ¼diger Reischuk, Till Tantau

Dynamic Kernels for Hitting Sets and Set Packing

Computing kernels for the hitting set problem (the problem of
finding a size-$k$ set that intersects each hyperedge of a
hypergraph) is a well-studied computational problem. For hypergraphs
with $m$ hyperedges, each of size at most~$d$, the best algorithms
can compute kernels of size $O(k^d)$ in ... more >>>

TR19-181 | 9th December 2019
Michal Koucky, Vojtech Rodl, Navid Talebanfard

A Separator Theorem for Hypergraphs and a CSP-SAT Algorithm

Revisions: 1

We show that for every $r \ge 2$ there exists $\epsilon_r > 0$ such that any $r$-uniform hypergraph on $m$ edges with bounded vertex degree has a set of at most $(\frac{1}{2} - \epsilon_r)m$ edges the removal of which breaks the hypergraph into connected components with at most $m/2$ edges. ... more >>>

ISSN 1433-8092 | Imprint