In this paper we introduce a new model for computing=20
polynomials - a depth 2 circuit with a symmetric gate at the top=20
and plus gates at the bottom, i.e the circuit computes a=20
symmetric function in linear functions -
$S_{m}^{d}(\ell_1,\ell_2,...,\ell_m)$ ($S_{m}^{d}$ is the $d$'th=20
elementary symmetric polynomial in $m$ ...
more >>>
In this work we study two seemingly unrelated notions. Locally Decodable Codes(LDCs) are codes that allow the recovery of each message bit from a constant number of entries of the codeword. Polynomial Identity Testing (PIT) is one of the fundamental problems of algebraic complexity: we are given a circuit computing ... more >>>
We study the identity testing problem for depth $3$ arithmetic circuits ($\Sigma\Pi\Sigma$ circuits). We give the first deterministic polynomial time identity test for $\Sigma\Pi\Sigma$ circuits with bounded top fanin. We also show that the {\em rank} of a minimal and simple $\Sigma\Pi\Sigma$ circuit with bounded top fanin, computing zero, can ... more >>>
An \emph{arithmetic read-once formula} (ROF for short) is a
formula (a circuit whose underlying graph is a tree) in which the
operations are $\{+,\times\}$ and such that every input variable
labels at most one leaf. A \emph{preprocessed ROF} (PROF for
short) is a ROF in which we are allowed to ...
more >>>
Reconstruction of arithmertic circuits has been heavily studied in the past few years and has connections to proving lower bounds and deterministic identity testing. In this paper we present a polynomial time randomized algorithm for reconstructing $\Sigma\Pi\Sigma(2)$ circuits over $\R$, i.e. depth$-3$ circuits with fan-in $2$ at the top addition ... more >>>
We give two results on the size of AC0 circuits computing promise majority. $\epsilon$-promise majority is majority promised that either at most an $\epsilon$ fraction of the input bits are 1, or at most $\epsilon$ are 0.
First, we show super quadratic lower bounds on both monotone and general depth ... more >>>