Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > LOW DEGREE TEST:
Reports tagged with Low degree test:
TR04-046 | 4th June 2004
Eli Ben-Sasson, Madhu Sudan

Robust Locally Testable Codes and Products of Codes

We continue the investigation of locally testable codes, i.e.,
error-correcting codes for whom membership of a given word in the
code can be tested probabilistically by examining it in very few
locations. We give two general results on local testability:
First, motivated by the recently proposed notion of robust
probabilistically ... more >>>


TR05-038 | 10th April 2005
Ran Raz

Quantum Information and the PCP Theorem

We show how to encode $2^n$ (classical) bits $a_1,...,a_{2^n}$
by a single quantum state $|\Psi \rangle$ of size $O(n)$ qubits,
such that:
for any constant $k$ and any $i_1,...,i_k \in \{1,...,2^n\}$,
the values of the bits $a_{i_1},...,a_{i_k}$ can be retrieved
from $|\Psi \rangle$ by a one-round Arthur-Merlin interactive ... more >>>


TR05-086 | 14th August 2005
Dana Moshkovitz, Ran Raz

Sub-Constant Error Low Degree Test of Almost Linear Size

Revisions: 1

Given a function f:F^m \rightarrow F over a finite
field F, a low degree tester tests its proximity to
an m-variate polynomial of total degree at most d
over F. The tester is usually given access to an oracle
A providing the supposed restrictions of f to
affine subspaces of ... more >>>


TR25-126 | 2nd September 2025
Amey Bhangale, Silas Richelson

Plane vs. Plane Low Degree Test

In this work, we give an optimal analysis of the plane versus plane test of Raz and Safra (STOC'97). More specifically, consider a table $T$ that assigns every plane $P$ from $\mathbb{F}_q^m$ a bivariate degree $d$ polynomial. The goal is to check if these polynomials are restrictions of a global ... more >>>




ISSN 1433-8092 | Imprint