Marius Zimand

Trevisan has shown that constructions of pseudo-random generators from

hard functions (the Nisan-Wigderson approach) also produce extractors.

We show that constructions of pseudo-random generators from one-way permutations

(the Blum-Micali-Yao approach) can be used for building extractors as well.

Using this new technique we build extractors that ...
more >>>

Marius Zimand

We show that if DTIME[2^{O(n)}] is not included in DSPACE}[2^{o(n)}], then, for every set B in PSPACE, all strings x in B of length n can be represented by a string compressed(x) of length at most log (|B^{=n}|) + O(log n), such that a polynomial-time algorithm, given compressed(x), can distinguish ... more >>>

Igor Carboni Oliveira, Rahul Santhanam

We study {\it pseudodeterministic constructions}, i.e., randomized algorithms which output the {\it same solution} on most computation paths. We establish unconditionally that there is an infinite sequence $\{p_n\}_{n \in \mathbb{N}}$ of increasing primes and a randomized algorithm $A$ running in expected sub-exponential time such that for each $n$, on input ... more >>>