Emanuele Viola

We exhibit an explicitly computable `pseudorandom' generator stretching $l$ bits into $m(l) = l^{\Omega(\log l)}$ bits that look random to constant-depth circuits of size $m(l)$ with $\log m(l)$ arbitrary symmetric gates (e.g. PARITY, MAJORITY). This improves on a generator by Luby, Velickovic and Wigderson (ISTCS '93) that achieves the same ... more >>>

Albert Atserias

We may believe SAT does not have small Boolean circuits.

But is it possible that some language with small circuits

looks indistiguishable from SAT to every polynomial-time

bounded adversary? We rule out this possibility. More

precisely, assuming SAT does not have small circuits, we

show that ...
more >>>

Noam Livne

In this paper we study the possibility of proving the existence of

one-way functions based on average case hardness. It is well-known

that if there exists a polynomial-time sampler that outputs

instance-solution pairs such that the distribution on the instances

is hard on average, then one-way functions exist. We study ...
more >>>