For every $\epsilon>0$,
we present a {\em deterministic}\/ log-space algorithm
that correctly decides undirected graph connectivity
on all but at most $2^{n^\epsilon}$ of the $n$-vertex graphs.
The same holds for every problem in Symmetric Log-space (i.e., $\SL$).
Making no assumptions (and in particular not assuming the ... more >>>
We present a deterministic, log-space algorithm that solves
st-connectivity in undirected graphs. The previous bound on the
space complexity of undirected st-connectivity was
log^{4/3}() obtained by Armoni, Ta-Shma, Wigderson and
Zhou. As undirected st-connectivity is
complete for the class of problems solvable by symmetric,
non-deterministic, log-space computations (the class SL), ...
more >>>
We highlight a common theme in four relatively recent works
that establish remarkable results by an iterative approach.
Starting from a trivial construct,
each of these works applies an ingeniously designed
sequence of iterations that yields the desired result,
which is highly non-trivial. Furthermore, in each iteration,
more >>>