Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > APPROXIMATE MAJORITY:
Reports tagged with approximate majority:
TR05-137 | 21st November 2005
Emanuele Viola

On Probabilistic Time versus Alternating Time

We prove several new results regarding the relationship between probabilistic time, BPTime(t), and alternating time, \Sigma_{O(1)} Time(t). Our main results are the following:

1) We prove that BPTime(t) \subseteq \Sigma_3 Time(t polylog(t)). Previous results show that BPTime(t) \subseteq \Sigma_2 Time(t^2 log t) (Sipser and Gacs, STOC '83; Lautemann, IPL '83) ... more >>>


TR17-022 | 13th February 2017
Benjamin Rossman, Srikanth Srinivasan

Separation of AC$^0[\oplus]$ Formulas and Circuits

This paper gives the first separation between the power of {\em formulas} and {\em circuits} of equal depth in the $\mathrm{AC}^0[\oplus]$ basis (unbounded fan-in AND, OR, NOT and MOD$_2$ gates). We show, for all $d(n) \le O(\frac{\log n}{\log\log n})$, that there exist {\em polynomial-size depth-$d$ circuits} that are not equivalent ... more >>>


TR20-122 | 8th August 2020
Joshua Cook

Size Bounds on Low Depth Circuits for Promise Majority

Revisions: 3

We give two results on the size of AC0 circuits computing promise majority. $\epsilon$-promise majority is majority promised that either at most an $\epsilon$ fraction of the input bits are 1, or at most $\epsilon$ are 0.

First, we show super quadratic lower bounds on both monotone and general depth ... more >>>




ISSN 1433-8092 | Imprint