Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > EPSILON-BIASED SETS:
Reports tagged with epsilon-biased sets:
TR05-155 | 10th December 2005
Amir Shpilka

Constructions of low-degree and error-correcting epsilon-biased sets

In this work we give two new constructions of $\epsilon$-biased
generators. Our first construction answers an open question of
Dodis and Smith, and our second construction
significantly extends a result of Mossel et al.
In particular we obtain the following results:

1. We construct a family of asymptotically good binary ... more >>>


TR12-170 | 30th November 2012
Scott Aaronson, Travis Hance

Generalizing and Derandomizing Gurvits's Approximation Algorithm for the Permanent

Around 2002, Leonid Gurvits gave a striking randomized algorithm to approximate the permanent of an n×n matrix A. The algorithm runs in O(n^2/?^2) time, and approximates Per(A) to within ±?||A||^n additive error. A major advantage of Gurvits's algorithm is that it works for arbitrary matrices, not just for nonnegative matrices. ... more >>>


TR22-004 | 3rd January 2022
Silas Richelson, Sourya Roy

Analyzing Ta-Shma’s Code via the Expander Mixing Lemma

Random walks in expander graphs and their various derandomizations (e.g., replacement/zigzag product) are invaluable tools from pseudorandomness. Recently, Ta-Shma used s-wide replacement walks in his breakthrough construction of a binary linear code almost matching the Gilbert-Varshamov bound (STOC 2017). Ta-Shma’s original analysis was entirely linear algebraic, and subsequent developments have ... more >>>


TR22-027 | 22nd February 2022
Guy Blanc, Dean Doron

New Near-Linear Time Decodable Codes Closer to the GV Bound

Revisions: 1

We construct a family of binary codes of relative distance $\frac{1}{2}-\varepsilon$ and rate $\varepsilon^{2} \cdot 2^{-\log^{\alpha}(1/\varepsilon)}$ for $\alpha \approx \frac{1}{2}$ that are decodable, probabilistically, in near linear time. This improves upon the rate of the state-of-the-art near-linear time decoding near the GV bound due to Jeronimo, Srivastava, and Tulsiani, who ... more >>>


TR24-110 | 1st July 2024
Joshua Cook, Dana Moshkovitz

Time and Space Efficient Deterministic Decoders

Time efficient decoding algorithms for error correcting codes often require linear space. However, locally decodable codes yield more efficient randomized decoders that run in time $n^{1+o(1)}$ and space $n^{o(1)}$. In this work we focus on deterministic decoding.
Gronemeier showed that any non-adaptive deterministic decoder for a good code running ... more >>>




ISSN 1433-8092 | Imprint