Amir Shpilka

In this work we give two new constructions of $\epsilon$-biased

generators. Our first construction answers an open question of

Dodis and Smith, and our second construction

significantly extends a result of Mossel et al.

In particular we obtain the following results:

1. We construct a family of asymptotically good binary ... more >>>

Zohar Karnin, Yuval Rabani, Amir Shpilka

We construct a small set of explicit linear transformations mapping $R^n$ to $R^{O(\log n)}$, such that the $L_2$ norm of

any vector in $R^n$ is distorted by at most $1\pm o(1)$ in at

least a fraction of $1 - o(1)$ of the transformations in the set.

Albeit the tradeoff between ...
more >>>

Avraham Ben-Aroya, Gil Cohen

A $(k,\epsilon)$-biased sample space is a distribution over $\{0,1\}^n$ that $\epsilon$-fools every nonempty linear test of size at most $k$. Since they were introduced by Naor and Naor [SIAM J. Computing, 1993], these sample spaces have become a central notion in theoretical computer science with a variety of applications.

When ... more >>>

Aditya Bhaskara, Devendra Desai, Srikanth Srinivasan

We consider the problem of constructing explicit Hitting sets for Combinatorial Shapes, a class of statistical tests first studied by Gopalan, Meka, Reingold, and Zuckerman (STOC 2011). These generalize many well-studied classes of tests, including symmetric functions and combinatorial rectangles. Generalizing results of Linial, Luby, Saks, and Zuckerman (Combinatorica 1997) ... more >>>

Zeyu Guo

Curve samplers are sampling algorithms that proceed by viewing the domain as a vector space over a finite field, and randomly picking a low-degree curve in it as the sample. Curve samplers exhibit a nice property besides the sampling property: the restriction of low-degree polynomials over the domain to the ... more >>>

Shashank Agrawal, Divya Gupta, Hemanta Maji, Omkant Pandey, Manoj Prabhakaran

The notion of non-malleable codes was introduced as a relaxation of standard error-correction and error-detection. Informally, a code is non-malleable if the message contained in a modified codeword is either the original message, or a completely unrelated value.

In the information theoretic setting, although existence of such codes for various ... more >>>

Joshua Brakensiek, Venkatesan Guruswami, Samuel Zbarsky

We consider the problem of constructing binary codes to recover from $k$-bit deletions with efficient encoding/decoding, for a fixed $k$. The single deletion case is well understood, with the Varshamov-Tenengolts-Levenshtein code from 1965 giving an asymptotically optimal construction with $\approx 2^n/n$ codewords of length $n$, i.e., at most $\log n$ ... more >>>

Boris Bukh, Venkatesan Guruswami

We consider codes over fixed alphabets against worst-case symbol deletions. For any fixed $k \ge 2$, we construct a family of codes over alphabet of size $k$ with positive rate, which allow efficient recovery from a worst-case deletion fraction approaching $1-\frac{2}{k+1}$. In particular, for binary codes, we are able to ... more >>>

Eshan Chattopadhyay, Xin Li

We propose a new model of weak random sources which we call sumset sources. A sumset source $\mathbf{X}$ is the sum of $C$ independent sources $\mathbf{X}_1,\ldots,\mathbf{X}_C$, where each $\mathbf{X}_i$ is an $n$-bit source with min-entropy $k$. We show that extractors for this class of sources can be used to give ... more >>>

Igor Carboni Oliveira, Rahul Santhanam

We study {\it pseudodeterministic constructions}, i.e., randomized algorithms which output the {\it same solution} on most computation paths. We establish unconditionally that there is an infinite sequence $\{p_n\}_{n \in \mathbb{N}}$ of increasing primes and a randomized algorithm $A$ running in expected sub-exponential time such that for each $n$, on input ... more >>>

Michael Forbes, Amir Shpilka

In this paper we study the complexity of constructing a hitting set for $\overline{VP}$, the class of polynomials that can be infinitesimally approximated by polynomials that are computed by polynomial sized algebraic circuits, over the real or complex numbers. Specifically, we show that there is a PSPACE algorithm that given ... more >>>

Eshan Chattopadhyay, Xin Li

We present explicit constructions of non-malleable codes with respect to the following tampering classes. (i) Linear functions composed with split-state adversaries: In this model, the codeword is first tampered by a split-state adversary, and then the whole tampered codeword is further tampered by a linear function. (ii) Interleaved split-state adversary: ... more >>>

Eshan Chattopadhyay, Anindya De, Rocco Servedio

We show that a very simple pseudorandom generator fools intersections of $k$ linear threshold functions (LTFs) and arbitrary functions of $k$ LTFs over $n$-dimensional Gaussian space.

The two analyses of our PRG (for intersections versus arbitrary functions of LTFs) are quite different from each other and from previous analyses of ... more >>>

Ronen Shaltiel, Swastik Kopparty, Jad Silbak

We consider codes for space bounded channels. This is a model for communication under noise that was studied by Guruswami and Smith (J. ACM 2016) and lies between the Shannon (random) and Hamming (adversarial) models. In this model, a channel is a space bounded procedure that reads the codeword in ... more >>>

Eshan Chattopadhyay, Jyun-Jie Liao

In a seminal work, Nisan (Combinatorica'92) constructed a pseudorandom generator for length $n$ and width $w$ read-once branching programs with seed length $O(\log n\cdot \log(nw)+\log n\cdot\log(1/\varepsilon))$ and error $\varepsilon$. It remains a central question to reduce the seed length to $O(\log (nw/\varepsilon))$, which would prove that $\mathbf{BPL}=\mathbf{L}$. However, there has ... more >>>

Eshan Chattopadhyay, Jesse Goodman

An $(n,r,s)$-design, or $(n,r,s)$-partial Steiner system, is an $r$-uniform hypergraph over $n$ vertices with pairwise hyperedge intersections of size $0$, we extract from $(N,K,n,k)$-adversarial sources of locality $0$, where $K\geq N^\delta$ and $k\geq\text{polylog }n$. The previous best result (Chattopadhyay et al., STOC 2020) required $K\geq N^{1/2+o(1)}$. As a result, we ... more >>>

Venkatesan Guruswami, Chaoping Xing

We construct two classes of algebraic code families which are efficiently list decodable with small output list size from a fraction $1-R-\epsilon$ of adversarial errors where $R$ is the rate of the code, for any desired positive constant $\epsilon$. The alphabet size depends only on $\epsilon$ and is nearly-optimal.

The ... more >>>

Joshua Cook, Dana Moshkovitz

We give the first explicit constant rate, constant relative distance, linear codes with an encoder that runs in time $n^{1 + o(1)}$ and space $\mathop{polylog}(n)$ provided random access to the message. Prior to this work, the only such codes were non-explicit, for instance repeat accumulate codes [DJM98] and the codes ... more >>>

Joshua Cook, Dana Moshkovitz

Time efficient decoding algorithms for error correcting codes often require linear space. However, locally decodable codes yield more efficient randomized decoders that run in time $n^{1+o(1)}$ and space $n^{o(1)}$. In this work we focus on deterministic decoding.

Gronemeier showed that any non-adaptive deterministic decoder for a good code running ...
more >>>