Wee, Hoeteck

A source is compressible if we can efficiently compute short

descriptions of strings in the support and efficiently

recover the strings from the descriptions. In this paper, we

present a technique for proving lower bounds on

compressibility in an oracle setting, which yields the

following results:

- We ...
more >>>

Scott Aaronson

Although a quantum state requires exponentially many classical bits to describe, the laws of quantum mechanics impose severe restrictions on how that state can be accessed. This paper shows in three settings that quantum messages have only limited advantages over classical ones.

First, we show that BQP/qpoly is contained in ...
more >>>

Scott Aaronson, Adam Bouland, Joseph Fitzsimons, Mitchell Lee

We explore the space "just above" BQP by defining a complexity class PDQP (Product Dynamical Quantum Polynomial time) which is larger than BQP but does not contain NP relative to an oracle. The class is defined by imagining that quantum computers can perform measurements that do not collapse the ... more >>>

Ran Raz, Avishay Tal

We present a distribution $D$ over inputs in $\{-1,1\}^{2N}$, such that:

(1) There exists a quantum algorithm that makes one (quantum) query to the input, and runs in time $O(\log N)$, that distinguishes between $D$ and the uniform distribution with advantage $\Omega(1/\log N)$.

(2) No Boolean circuit of $\mathrm{quasipoly}(N)$ ...
more >>>

Xinyu Wu

After presentations of the oracle separation of BQP and PH result by Raz and Tal [ECCC TR18-107], several people

(e.g. Ryan Oâ€™Donnell, James Lee, Avishay Tal) suggested that the proof may be simplified by

stochastic calculus. In this short note, we describe such a simplification.

Scott Aaronson, Robin Kothari, William Kretschmer, Justin Thaler

This paper proves new limitations on the power of quantum computers to solve approximate counting---that is, multiplicatively estimating the size of a nonempty set $S\subseteq [N]$.

Given only a membership oracle for $S$, it is well known that approximate counting takes $\Theta(\sqrt{N/|S|})$ quantum queries. But what if a quantum algorithm ... more >>>