Quantum finite automata have been studied intensively since
their introduction in late 1990s as a natural model of a
quantum computer with finite-dimensional quantum memory space.
This paper seeks their direct application
to interactive proof systems in which a mighty quantum prover
communicates with a ...
more >>>
We investigate two resources whose effects on quantum interactive proofs remain poorly understood: the promise of unentanglement, and the verifier’s ability to condition on an intermediate measurement, which we call post-measurement branching. We first show that unentanglement can dramatically increase computational power: three-round unentangled quantum interactive proofs equal NEXP, even ... more >>>