Lance Fortnow, Russell Impagliazzo, Chris Umans

We study the complexity of solving succinct zero-sum games,

i.e., the

games whose payoff matrix $M$ is given implicitly by a Boolean circuit

$C$ such that $M(i,j)=C(i,j)$. We complement the known $\EXP$-hardness

of computing the \emph{exact} value of a succinct zero-sum game by

several results on \emph{approximating} the value. (1) ...
more >>>

Venkatesan Chakaravarthy, Sambuddha Roy

We study some problems solvable in deterministic polynomial time given oracle access to the (promise version of) the Arthur-Merlin class.

Our main results are the following: (i) $BPP^{NP}_{||} \subseteq P^{prAM}_{||}$; (ii) $S_2^p \subseteq P^{prAM}$. In addition to providing new upperbounds for the classes $S_2^p$ and $BPP^{NP}_{||}$, these results are interesting ...
more >>>