We present upper bounds on the size of codes that are locally
testable by querying only two input symbols. For linear codes, we
show that any $2$-locally testable code with minimal distance
$\delta n$ over a finite field $F$ cannot have more than
$|F|^{3/\delta}$ codewords. This result holds even ...
more >>>
Following Feige, we consider the problem of
estimating the average degree of a graph.
Using ``neighbor queries'' as well as ``degree queries'',
we show that the average degree can be approximated
arbitrarily well in sublinear time, unless the graph is extremely sparse
(e.g., unless the graph has a sublinear ...
more >>>
We study the list-decodability of multiplicity codes. These codes, which are based on evaluations of high-degree polynomials and their derivatives, have rate approaching $1$ while simultaneously allowing for sublinear-time error-correction. In this paper, we show that multiplicity codes also admit powerful list-decoding and local list-decoding algorithms correcting a large fraction ... more >>>