We study the diagonalization in the context of proof
complexity. We prove that at least one of the
following three conjectures is true:
1. There is a boolean function computable in E
that has circuit complexity $2^{\Omega(n)}$.
2. NP is not closed under the complement.
3. There is no ... more >>>
The working conjecture from K'04 that there is a proof complexity generator hard for all
proof systems can be equivalently formulated (for p-time generators) without a reference to proof complexity notions
as follows:
\begin{itemize}
\item There exist a p-time function $g$ extending each input by one bit such that its ...
more >>>
Razborov and Rudich's natural proofs barrier roughly says that it is computationally hard to certify that a uniformly random truth table has high circuit complexity. In this work, we show that the natural proofs barrier (specifically, Rudich's conjecture that there are no NP-constructive natural properties against $P/poly$) implies the following ... more >>>
Given a circuit $G: \{0, 1\}^n \to \{0, 1\}^m$ with $m > n$, the *range avoidance* problem ($\text{Avoid}$) asks to output a string $y\in \{0, 1\}^m$ that is not in the range of $G$. Besides its profound connection to circuit complexity and explicit construction problems, this problem is also related ... more >>>