Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > TURING COMPLETENESS:
Reports tagged with Turing completeness:
TR01-032 | 3rd April 2001
A. Pavan, Alan L. Selman

Separation of NP-completeness Notions

We use hypotheses of structural complexity theory to separate various
NP-completeness notions. In particular, we introduce an hypothesis from which we describe a set in NP that is Turing complete but not truth-table complete. We provide fairly thorough analyses of the hypotheses that we introduce. Unlike previous approaches, we ... more >>>


TR02-005 | 3rd January 2002
A. Pavan, Alan L. Selman

Bi-Immunity Separates Strong NP-Completeness Notions

We prove that if for some epsilon > 0 NP contains a set that is
DTIME(2^{n^{epsilon}})-bi-immune, then NP contains a set that 2-Turing
complete for NP but not 1-truth-table complete for NP. Lutz and Mayordomo
(LM96) and Ambos-Spies and Bentzien (AB00) previously obtained the
same consequence using strong ... more >>>


TR04-025 | 24th January 2004
John Hitchcock, A. Pavan, N. V. Vinodchandran

Partial Bi-Immunity and NP-Completeness

The Turing and many-one completeness notions for $\NP$ have been
previously separated under {\em measure}, {\em genericity}, and {\em
bi-immunity} hypotheses on NP. The proofs of all these results rely
on the existence of a language in NP with almost everywhere hardness.

In this paper we separate the same NP-completeness ... more >>>


TR14-126 | 9th October 2014
Debasis Mandal, A. Pavan, Rajeswari Venugopalan

Separating Cook Completeness from Karp-Levin Completeness under a Worst-Case Hardness Hypothesis

We show that there is a language that is Turing complete for NP but not many-one complete for NP, under a {\em worst-case} hardness hypothesis. Our hypothesis asserts the existence of a non-deterministic, double-exponential time machine that runs in time $O(2^{2^{n^c}})$ (for some $c > 1$) accepting $\Sigma^*$ whose accepting ... more >>>




ISSN 1433-8092 | Imprint