We revisit the problem of hardness amplification in $\NP$, as
recently studied by O'Donnell (STOC `02). We prove that if $\NP$
has a balanced function $f$ such that any circuit of size $s(n)$
fails to compute $f$ on a $1/\poly(n)$ fraction of inputs, then
$\NP$ has a function $f'$ such ...
more >>>
We study lower bounds for Locality Sensitive Hashing (LSH) in the strongest setting: point sets in $\{0,1\}^d$ under the Hamming distance. Recall that $\mathcal{H}$ is said to be an $(r, cr, p, q)$-sensitive hash family if all pairs $x,y \in \{0,1\}^d$ with dist$(x,y) \leq r$ have probability at least $p$ ... more >>>
We show a connection between the deMorgan formula size of a Boolean function and the noise stability of the function. Using this connection, we show that the Fourier spectrum of any balanced Boolean function computed by a deMorgan formula of size $s$ is concentrated on coefficients of degree up to ... more >>>
In this work we introduce a new technique for reducing the dimension of the ambient space of low-degree polynomials in the Gaussian space while preserving their relative correlation structure. As applications, we address the following problems:
(I) Computability of the Approximately Optimal Noise Stable function over Gaussian space:
The goal ... more >>>
We give a family of dictatorship tests with perfect completeness and low-soundness for 2-to-2 constraints. The associated 2-to-2 conjecture has been the basis of some previous inapproximability results with perfect completeness. However, evidence towards the conjecture in the form of integrality gaps even against weak semidefinite programs has been elusive. ... more >>>
We show that the ''majority is least stable'' conjecture is true for $n=1$ and $3$ and false for all odd $n\geq 5$.
more >>>