Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > NEXP:
Reports tagged with NEXP:
TR02-055 | 13th September 2002
Valentine Kabanets, Russell Impagliazzo

Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds

Revisions: 1

We show that derandomizing Polynomial Identity Testing is,
essentially, equivalent to proving circuit lower bounds for
NEXP. More precisely, we prove that if one can test in polynomial
time (or, even, nondeterministic subexponential time, infinitely
often) whether a given arithmetic circuit over integers computes an
identically zero polynomial, then either ... more >>>


TR04-064 | 25th June 2004
Piotr Faliszewski

Exponential time reductions and sparse languages in NEXP

In this paper we define a many-one reduction which is allowed to work in exponential time but may only output polynomially many symbols. We show that there are no NEXP-hard sparse languages under our reduction unless EXP=UEXP.

more >>>

TR09-051 | 2nd July 2009
Eric Allender, Michal Koucky, Detlef Ronneburger, Sambuddha Roy

The Pervasive Reach of Resource-Bounded Kolmogorov Complexity in Computational Complexity Theory

We continue an investigation into resource-bounded Kolmogorov complexity \cite{abkmr}, which highlights the close connections between circuit complexity and Levin's time-bounded Kolmogorov complexity measure Kt (and other measures with a similar flavor), and also exploits derandomization techniques to provide new insights regarding Kolmogorov complexity.
The Kolmogorov measures that have been ... more >>>


TR10-055 | 31st March 2010
Eric Allender

Avoiding Simplicity is Complex

Revisions: 2

It is a trivial observation that every decidable set has strings of length $n$ with Kolmogorov complexity $\log n + O(1)$ if it has any strings of length $n$ at all. Things become much more interesting when one asks whether a similar property holds when one
considers *resource-bounded* Kolmogorov complexity. ... more >>>


TR10-139 | 17th September 2010
Eric Allender, Luke Friedman, William Gasarch

Limits on the Computational Power of Random Strings

Revisions: 1

Let C(x) and K(x) denote plain and prefix Kolmogorov complexity, respectively, and let R_C and R_K denote the sets of strings that are ``random'' according to these measures; both R_K and R_C are undecidable. Earlier work has shown that every set in NEXP is in NP relative to both R_K ... more >>>


TR12-130 | 3rd October 2012
Abuzer Yakaryilmaz

Public-qubits versus private-coins

We introduce a new public quantum interactive proof system, namely qAM, by augmenting the verifier with a fixed-size quantum register in Arthur-Merlin game. We focus on space-bounded verifiers, and compare our new public system with private-coin interactive proof (IP) system in the same space bounds. We show that qAM systems ... more >>>


TR13-063 | 19th April 2013
Dung Nguyen, Alan Selman

Non-autoreducible Sets for NEXP

We investigate autoreducibility properties of complete sets for $\cNEXP$ under different polynomial reductions.
Specifically, we show under some polynomial reductions that there is are complete sets for
$\cNEXP$ that are not autoreducible. We obtain the following results:
- There is a $\reduction{p}{tt}$-complete set for $\cNEXP$ that is not $\reduction{p}{btt}$-autoreducible.
more >>>


TR13-157 | 11th November 2013
Bin Fu

Derandomizing Polynomial Identity over Finite Fields Implies Super-Polynomial Circuit Lower Bounds for NEXP

Revisions: 1 , Comments: 1

We show that
derandomizing polynomial identity testing over an arbitrary finite
field implies that NEXP does not have polynomial size boolean
circuits. In other words, for any finite field F(q) of size q,
$PIT_q\in NSUBEXP\Rightarrow NEXP\not\subseteq P/poly$, where
$PIT_q$ is the polynomial identity testing problem over F(q), and
NSUBEXP is ... more >>>


TR13-188 | 13th December 2013
Christian Glaßer, Maximilian Witek

Autoreducibility and Mitoticity of Logspace-Complete Sets for NP and Other Classes

We study the autoreducibility and mitoticity of complete sets for NP and other complexity classes, where the main focus is on logspace reducibilities. In particular, we obtain:
- For NP and all other classes of the PH: each logspace many-one-complete set is logspace Turing-autoreducible.
- For P, the delta-levels of ... more >>>




ISSN 1433-8092 | Imprint