A boolean circuit $f(x_1,\ldots,x_n)$ \emph{represents} a graph $G$
on $n$ vertices if for every input vector $a\in\{0,1\}^n$ with
precisely two $1$'s in, say, positions $i$ and $j$, $f(a)=1$
precisely when $i$ and $j$ are adjacent in $G$; on inputs with more
or less than two ...
more >>>
A bipartite formula on binary variables $x_1, \ldots, x_n$ and $y_1, \ldots, y_n$ is a binary tree whose internal nodes are marked with AND or OR gates and whose leaves may compute any function of either the $x$ or $y$ variables. We show that any bipartite formula for the Inner-Product ... more >>>
We reduce the problem of proving deterministic and nondeterministic Boolean circuit size lower bounds to the analysis of certain two-dimensional combinatorial cover problems. This is obtained by combining results of Razborov (1989), Karchmer (1993), and Wigderson (1993) in the context of the fusion method for circuit lower bounds with the ... more >>>