We give improved trade-off results on approximating general
minimum cost scheduling problems.
We prove upper and lower bounds for computing Merkle tree
traversals, and display optimal trade-offs between time
and space complexity of that problem.
We show that there are CNF formulas which can be refuted in resolution
in both small space and small width, but for which any small-width
proof must have space exceeding by far the linear worst-case upper
bound. This significantly strengthens the space-width trade-offs in
[Ben-Sasson '09]}, and provides one more ...
more >>>
We establish an exactly tight relation between reversible pebblings of graphs and Nullstellensatz refutations of pebbling formulas, showing that a graph $G$ can be reversibly pebbled in time $t$ and space $s$ if and only if there is a Nullstellensatz refutation of the pebbling formula over $G$ in size $t+1$ ... more >>>