Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > SYMMETRY OF INFORMATION:
Reports tagged with symmetry of information:
TR04-031 | 22nd March 2004
Troy Lee, Andrei Romashchenko

On Polynomially Time Bounded Symmetry of Information

The information contained in a string $x$ about a string $y$
is defined as the difference between the Kolmogorov complexity
of $y$ and the conditional Kolmogorov complexity of $y$ given $x$,
i.e., $I(x:y)=\C(y)-\C(y|x)$. From the well-known Kolmogorov--Levin Theorem it follows that $I(x:y)$ is symmetric up to a small ... more >>>


TR22-007 | 14th January 2022
Halley Goldberg, Valentine Kabanets

A Simpler Proof of the Worst-Case to Average-Case Reduction for Polynomial Hierarchy via Symmetry of Information

We give a simplified proof of Hirahara's STOC'21 result showing that $DistPH \subseteq AvgP$ would imply $PH \subseteq DTIME[2^{O(n/\log n)}]$. The argument relies on a proof of the new result: Symmetry of Information for time-bounded Kolmogorov complexity under the assumption that $NP$ is easy on average, which is interesting in ... more >>>


TR23-035 | 22nd March 2023
Shuichi Hirahara, Rahul Ilango, Zhenjian Lu, Mikito Nanashima, Igor Carboni Oliveira

A Duality Between One-Way Functions and Average-Case Symmetry of Information

Symmetry of Information (SoI) is a fundamental property of Kolmogorov complexity that relates the complexity of a pair of strings and their conditional complexities. Understanding if this property holds in the time-bounded setting is a longstanding open problem. In the nineties, Longpré and Mocas (1993) and Longpré and Watanabe (1995) ... more >>>


TR24-136 | 4th September 2024
Shuichi Hirahara, Zhenjian Lu, Igor Oliveira

One-Way Functions and pKt Complexity

We introduce $\mathrm{pKt}$ complexity, a new notion of time-bounded Kolmogorov complexity that can be seen as a probabilistic analogue of Levin's $\mathrm{Kt}$ complexity. Using $\mathrm{pKt}$ complexity, we upgrade two recent frameworks that characterize one-way functions ($\mathrm{OWFs}$) via symmetry of information and meta-complexity, respectively. Among other contributions, we establish the following ... more >>>


TR24-155 | 11th October 2024
Shuichi Hirahara, Zhenjian Lu, Mikito Nanashima

Optimal Coding for Randomized Kolmogorov Complexity and Its Applications

The coding theorem for Kolmogorov complexity states that any string sampled from a computable distribution has a description length close to its information content. A coding theorem for resource-bounded Kolmogorov complexity is the key to obtaining fundamental results in average-case complexity, yet whether any samplable distribution admits a coding theorem ... more >>>


TR25-089 | 10th July 2025
Valentine Kabanets, Antonina Kolokolova

Chain Rules for Time-Bounded Kolmogorov Complexity

Time-bounded conditional Kolmogorov complexity of a string $x$ given $y$, $K^t(x\mid y)$, is the length of a shortest program that, given $y$, prints $x$ within $t$ steps. The Chain Rule for conditional $K^t$ with error $e$ is the following hypothesis: there is a constant $c\in\mathbb{N}$ such that, for any strings ... more >>>


TR25-215 | 25th November 2025
Halley Goldberg, Jinqiao Hu, Zhenjian Lu, Jingyi Lyu, Igor Oliveira

Synergies Between Complexity Theory and Nondeterministic Kolmogorov Complexity

We investigate central questions in complexity theory through the lens of time-bounded Kolmogorov complexity, focusing on $\textit{nondeterministic}$ measures [AKRR03] and their extensions. In more detail, we consider succinct encodings of a string by programs that may be nondeterministic (nK), randomized (rK), or combine both resources – yielding richer notions such ... more >>>




ISSN 1433-8092 | Imprint