Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > POLYTOPES:
Reports tagged with polytopes:
TR04-070 | 22nd June 2004
Leonid Gurvits

Combinatorial and algorithmic aspects of hyperbolic polynomials

Let $p(x_1,...,x_n) =\sum_{ (r_1,...,r_n) \in I_{n,n} } a_{(r_1,...,r_n) } \prod_{1 \leq i \leq n} x_{i}^{r_{i}}$
be homogeneous polynomial of degree $n$ in $n$ real variables with integer nonnegative coefficients.
The support of such polynomial $p(x_1,...,x_n)$
is defined as $supp(p) = \{(r_1,...,r_n) \in I_{n,n} : a_{(r_1,...,r_n)} \neq 0 ... more >>>


TR09-144 | 24th December 2009
Prahladh Harsha, Adam Klivans, Raghu Meka

An Invariance Principle for Polytopes

Let $X$ be randomly chosen from $\{-1,1\}^n$, and let $Y$ be randomly
chosen from the standard spherical Gaussian on $\R^n$. For any (possibly unbounded) polytope $P$
formed by the intersection of $k$ halfspaces, we prove that
$$\left|\Pr\left[X \in P\right] - \Pr\left[Y \in P\right]\right| \leq \log^{8/5}k ... more >>>


TR17-098 | 28th May 2017
Raman Arora, Amitabh Basu , Poorya Mianjy, Anirbit Mukherjee

Understanding Deep Neural Networks with Rectified Linear Units

Revisions: 2

In this paper we investigate the family of functions representable by deep neural networks (DNN) with rectified linear units (ReLU). We give the first-ever polynomial time (in the size of data) algorithm to train to global optimality a ReLU DNN with one hidden layer, assuming the input dimension and number ... more >>>


TR18-145 | 13th August 2018
Ryan O'Donnell, Rocco Servedio, Li-Yang Tan

Fooling Polytopes

We give a pseudorandom generator that fools $m$-facet polytopes over $\{0,1\}^n$ with seed length $\mathrm{polylog}(m) \cdot \log n$. The previous best seed length had superlinear dependence on $m$. An immediate consequence is a deterministic quasipolynomial time algorithm for approximating the number of solutions to any $\{0,1\}$-integer program.

more >>>

TR20-189 | 24th December 2020
Pavel Hrubes, Amir Yehudayoff

Shadows of Newton polytopes

We define the shadow complexity of a polytope P as the maximum number of vertices in a linear projection of $P$ to the plane. We describe connections to algebraic complexity and to parametrized optimization. We also provide several basic examples and constructions, and develop tools for bounding shadow complexity.

more >>>



ISSN 1433-8092 | Imprint