Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > MIN-BISECTION:
Reports tagged with MIN-BISECTION:
TR01-026 | 3rd April 2001
Piotr Berman, Marek Karpinski

Approximation Hardness of Bounded Degree MIN-CSP and MIN-BISECTION

We consider bounded occurrence (degree) instances of a minimum
constraint satisfaction problem MIN-LIN2 and a MIN-BISECTION problem for
graphs. MIN-LIN2 is an optimization problem for a given system of linear
equations mod 2 to construct a solution that satisfies the minimum number
of them. E3-OCC-MIN-E3-LIN2 ... more >>>


TR01-042 | 31st May 2001
Marek Karpinski

Approximating Bounded Degree Instances of NP-Hard Problems

We present some of the recent results on computational complexity
of approximating bounded degree combinatorial optimization problems. In
particular, we present the best up to now known explicit nonapproximability
bounds on the very small degree optimization problems which are of
particular importance on the intermediate stages ... more >>>


TR02-041 | 2nd July 2002
Wenceslas Fernandez de la Vega, Marek Karpinski, Claire Kenyon

A Polynomial Time Approximation Scheme for Metric MIN-BISECTION

We design a polynomial time approximation scheme (PTAS) for
the problem of Metric MIN-BISECTION of dividing a given finite metric
space into two halves so as to minimize the sum of distances across
that partition. The method of solution depends on a new metric placement
partitioning ... more >>>


TR02-046 | 16th July 2002
Marek Karpinski

On Approximability of Minimum Bisection Problem

We survey some recent results on the complexity of computing
approximate solutions for instances of the Minimum Bisection problem
and formulate some intriguing and still open questions about the
approximability status of that problem. Some connections to other
optimization problems are also indicated.

more >>>

TR03-030 | 27th February 2003
Amin Coja-Oghlan, Andreas Goerdt, André Lanka, Frank Schädlich

Certifying Unsatisfiability of Random 2k-SAT Formulas using Approximation Techniques

Abstract. It is known that random k-SAT formulas with at least
(2^k*ln2)*n random clauses are unsatisfiable with high probability. This
result is simply obtained by bounding the expected number of satisfy-
ing assignments of a random k-SAT instance by an expression tending
to 0 when n, the number of variables ... more >>>




ISSN 1433-8092 | Imprint